USA
Catalog   /   Photo   /   Camera Lenses

Comparison Sony 85mm f/1.8 FE vs Sony 85mm f/1.4 ZA A Planar T*

Add to comparison
Sony 85mm f/1.8 FE
Sony 85mm f/1.4 ZA A Planar T*
Sony 85mm f/1.8 FESony 85mm f/1.4 ZA A Planar T*
Compare prices 14
from $537.00 
Expecting restock
TOP sellers
Main
Excellent sharpness from an open aperture. 9 blade diaphragm. Nimble and tenacious autofocus. Programmable key on the side. Metal housing with dust and water protection.
Lens typefixfix
Main functionportraitportrait
DxOMark rating46
System
 
Sony
Minolta
Sony
Mount
 
Sony E
Sony A
 
Specs
Focal length85 mm
85 mm /127.5 mm with APS sensor/
Aperture valuef/1.8f/1.4
Viewing angles
19° /29° with APS sensor/
Min. diaphragm2222
Minimum focus distance0.8 m0.85 m
Maximum zoom0.130.13
Design
Sensor sizefull framefull frame/APS-C
Autofocus drive
stepper motor /linear/
is absent
AF drive (screw driven)
Internal focus
 /rear lens/
Design (elements/groups)9 elements in 8 groups8 elements in 7 groups
Number of diaphragm blades99
Dustproof & waterproof
Filter diameter67 mm72 mm
Dimensions (diameter/length)72х82 mm81.5x72.5 mm
Weight371 g560 g
Added to E-Catalogfebruary 2017november 2006

DxOMark rating

The result shown by the lens in the DxOMark rating.

DxOMark is one of the most popular and authoritative resources for expert testing of photography devices. According to the test results, the lens receives a certain number of points; The more points, the higher the final score.

System

The system indicates which brand of cameras this lens is designed for. Manufacturers of photographic equipment often use original mounting systems in their cameras that are not always compatible with each other; therefore, for normal use, the lens must be originally designed for the corresponding system. At the same time, note that the actual compatibility will also depend on the mount (see "Bayonet (mount)"). At the same time, one system often includes several mounts (for example, Canon and Nikon); it happens vice versa — one mount can be used in several systems at once (for example, Micro 4/3 is used by both Olympus and Panasonic). In general, the optimal selection order is as follows: first clarify the compatibility of the lens with the system, then with a specific mount.

Also note that third-party manufacturers (who do not produce cameras and deal only with lenses) often produce models designed for several different systems at once. Such compatibility can be achieved both through a set of adapters (included in the package or sold separately), and through the release of different modifications of the same lens, differing only in mounts. The features of each such model should be specified separately.

Mount

The type of mount used to connect the lens to the camera. The name comes from the English "bayonet", meaning "bayonet" and a bayonet-type connection. Bayonet mounts are used in the vast majority of modern digital cameras due to their reliability and ease of use.

Full compatibility of the lens with the camera is guaranteed only if the types of their mounts match. Some mounts are compatible with each other via adapters, but such a connection can limit the capabilities of the lens (for example, it will make it impossible to use autofocus) and is generally not considered optimal. It is worth considering that within the same system (see above) different mounts are often used, which are also incompatible with each other.

So, the manufacturer Canon has mounts EF-M, EF-S, EF, RF, RF-S. Leica has Leica M, Leica SL, Leica TL. Nikon has Nikon 1, Nikon F, Nikon Z in its arsenal. Pentax optics are equipped with Pentax 645, Pentax K, Pentax Q. Samsung uses NX-M and NX mounts. Sony models include Sony A and Sony E. In addition, there are other types of mounts on the market - both branded ( Fujifilm G, Fujifilm X, Hasselblad H, Sigma SA) and universal ( Four Thirds (4/3), Micro 4/3).

Note that there are lenses that are declared compatible with several mounts at once. This “omnivorousness” can be realized in different ways. For example, some models have a non-standard mount on the lens body, and compatibility with various mounts is ensured through the use of adapters; These adapters can be included in the delivery set or purchased separately. Another option is that the lens is available in several separate modifications, each for its own mount. These details should be clarified before purchasing.

Aperture value

Lens aperture is a characteristic that determines how much the lens attenuates the light flux passing through it. It depends on two main characteristics — the diameter of the active aperture of the lens and the focal length — and in the classical form is written as the ratio of the first to the second, while the diameter of the active aperture is taken as a unit: for example, 1 / 2.8. Often, when recording the characteristics of a lens, the unit is generally omitted, such a record looks, for example, like this: f / 1.8 or f/2.0. At the same time, the larger the number in the denominator, the smaller the aperture value: f / 4.0 lenses will produce a darker image than models with f / 1.4 aperture.

Zoom lenses usually have different aperture values for different focal lengths. In this case, the characteristics indicate two aperture values, for the minimum and maximum focal lengths, respectively, for example: f / 4.5-5.6

The larger the aperture of the lens, the shorter shutter speeds it allows you to use when shooting. This is especially important when shooting fast-moving subjects, shooting in low light, etc. And if necessary, the light stream transmitted by the lens can be weakened using a diaphragm (see below).

Another point that directly depends on this indicator is the depth o...f field (the depth of space that is in focus when shooting). The higher the aperture, the smaller the depth of field, and vice versa. Therefore, shooting with artistic background blur (bokeh) requires high-aperture optics, and for a large depth of field, you have to cover the aperture.

Viewing angles

This parameter determines the size of the area of the scene being shot that falls into the frame. The wider the viewing angles, the larger the area the lens can capture in one shot. They are directly related to the focal length of the lens (see "Focal length"), and also depend on the size of the specific matrix with which the optics are used: for the same lens, the smaller the matrix, the smaller the viewing angles, and vice versa. On our website, in the characteristics of optics, viewing angles are usually indicated when used with the matrix for which the lens was originally designed (for more details, see "Matrix Size").

Minimum focus distance

Minimum focus distance (m) - the smallest distance from which you can focus on an object and take a photo. Usually it ranges from 20 cm for wide-angle lenses to several metres for telephoto. In the macro mode of the camera or with the help of macro lenses, this distance can be less than 1 centimeter.

Sensor size

The size of the matrix for which the lens was originally designed.

The formats (and sizes) of modern matrices can be indicated diagonally in inches (1/1.8", 1/2.3" — in this case, the conditional "Visicon" inch is taken, which is about 17 mm), according to the actual dimensions (13.2x8.8 mm) or by symbol (APS-C, full frame). In general, the larger the sensor, the more advanced and expensive it is.

Among modern lenses, solutions for such matrix formats are most popular, in ascending order of size: 4/3(17.3x13 mm, used in cameras of the Four Thirds and Micro Four Thirds standards), APS-C(23x15 mm with slight variations, SLR and MILC cameras of the middle class), full frame(36x24 mm, the size of a standard film frame — advanced DSLRs), big frame(anything larger than full frame — high-end professional cameras). Optics for other formats is somewhat less common.

Note that it is technically allowed to use with “non-native” sensors, however, in such cases, the performance characteristics of the optics will differ from those claimed. So, when installed on a smaller matrix (for example, a full frame lens on an APS-C camera), only a part of the image created by the lens will fall on such a sensor. As a result, the space that gets into the frame will be narrower, and the details in the frame will be larger, as if the focal...length of the lens has increased (although it has remained unchanged, only the matrix has changed). And when installed on a larger sensor, the covered space will increase, the detail will decrease; in some cases, the size of the “picture” provided by the lens may simply not be enough for the entire area of the matrix, and the pictures will be obtained with black space around the edges.

Autofocus drive

A type of drive that ensures the movement of lens structural elements during automatic focus. Currently, the following types can be used:

Ultrasonic motor. The most advanced type of drive to date. Ultrasonic motors are much faster than conventional motors, provide higher accuracy, consume less power and are virtually silent. However, their cost is quite high.

Stepper motor. Drive control focal length and zoom (zoom). This type of motor is used for the most part only in full-size digital cameras. Among the advantages of a stepper motor, one can note: high reliability and accuracy of operation; in addition, it does not require power supply to maintain focus and zoom. Of course, stepper motors are not without drawbacks. Among the minuses can be identified: slow speed and increased noise. Additionally, a stepper motor is characterized by large dimensions and a rather large weight, which physically does not allow this type of drive to be integrated into the optics of mobile phones and ultra-compact cameras.

— Motor. In this case, an electric motor of a traditional design is meant. Such drives are simple and, as a result, inexpensive. Their disadvantages are the relatively low speed of operation, as well as the noise produced during this; the latter can sometimes be critical — for example, when shooting wildlife. Recently, designers have been us...ing various tricks to neutralize these shortcomings, but in general, the characteristics of conventional motors still remain relatively modest.

— Is absent. The complete absence of an autofocus motor in the lens. Focus such optics can be carried out either by the “screwdriver” system, or strictly manually (for more details on both options, see below).

AF drive (screw driven)

The presence in the lens of an autofocus drive of the "screwdriver" type. Lenses of this design do not have their own autofocus motor at all — it is located in the camera. Interchangeable optics, on the other hand, carries only the focus mechanism itself and has a special socket, with which, when installing the lens, the axis of the camera motor is joined.

Historically, the "screwdriver" is one of the first types of autofocus, but lenses and cameras with this feature are still widespread, in particular with Pentax and Sony Alpha. There are several reasons for this: although “screwdrivers” lose to ultrasonic drives, for the most part they outperform lenses with traditional motors; at the same time, due to the transfer of the engine to the camera, the weight and dimensions of the lens are reduced.
Sony 85mm f/1.8 FE often compared