USA
Catalog   /   Photo   /   Camera Lenses

Comparison Sigma 105mm f/2.8 OS AF HSM EX DG Macro vs Canon 100mm f/2.8 EF USM Macro

Add to comparison
Sigma 105mm f/2.8 OS AF HSM EX DG Macro
Canon 100mm f/2.8 EF USM Macro
Sigma 105mm f/2.8 OS AF HSM EX DG MacroCanon 100mm f/2.8 EF USM Macro
Compare prices 7
from $296.00 
Expecting restock
User reviews
0
0
0
2
TOP sellers
Lens typefixfix
Main functionportraitportrait
Macro photography
DxOMark rating29
System
Canon
Nikon
Olympus
Minolta
Pentax
Sigma
Sony
Canon
 
 
 
 
 
 
Mount
Canon EF
Nikon F
Pentax K
Sigma SA
Sony A
Canon EF
 
 
 
 
Specs
Focal length105 mm100 mm
Aperture valuef/2.8f/2.8
Viewing angles23.3°24°
Min. diaphragm2232
Minimum focus distance0.31 m0.31 m
Maximum zoom11
Design
Sensor sizefull frame/APS-Cfull frame/APS-C
Autofocus driveultrasonic drive motorultrasonic drive motor
Internal focus
Image stabilization
Design (elements/groups)16 elements in 11 groups12 elements in 8 groups
Number of diaphragm blades98
Filter diameter62 mm58 mm
Dimensions (diameter/length)78.3x126.4 mm79x119 mm
Weight600 g
Added to E-Catalogfebruary 2011november 2005

DxOMark rating

The result shown by the lens in the DxOMark rating.

DxOMark is one of the most popular and authoritative resources for expert testing of photography devices. According to the test results, the lens receives a certain number of points; The more points, the higher the final score.

System

The system indicates which brand of cameras this lens is designed for. Manufacturers of photographic equipment often use original mounting systems in their cameras that are not always compatible with each other; therefore, for normal use, the lens must be originally designed for the corresponding system. At the same time, note that the actual compatibility will also depend on the mount (see "Bayonet (mount)"). At the same time, one system often includes several mounts (for example, Canon and Nikon); it happens vice versa — one mount can be used in several systems at once (for example, Micro 4/3 is used by both Olympus and Panasonic). In general, the optimal selection order is as follows: first clarify the compatibility of the lens with the system, then with a specific mount.

Also note that third-party manufacturers (who do not produce cameras and deal only with lenses) often produce models designed for several different systems at once. Such compatibility can be achieved both through a set of adapters (included in the package or sold separately), and through the release of different modifications of the same lens, differing only in mounts. The features of each such model should be specified separately.

Mount

The type of mount used to connect the lens to the camera. The name comes from the English "bayonet", meaning "bayonet" and a bayonet-type connection. Bayonet mounts are used in the vast majority of modern digital cameras due to their reliability and ease of use.

Full compatibility of the lens with the camera is guaranteed only if the types of their mounts match. Some mounts are compatible with each other via adapters, but such a connection can limit the capabilities of the lens (for example, it will make it impossible to use autofocus) and is generally not considered optimal. It is worth considering that within the same system (see above) different mounts are often used, which are also incompatible with each other.

So, the manufacturer Canon has mounts EF-M, EF-S, EF, RF, RF-S. Leica has Leica M, Leica SL, Leica TL. Nikon has Nikon 1, Nikon F, Nikon Z in its arsenal. Pentax optics are equipped with Pentax 645, Pentax K, Pentax Q. Samsung uses NX-M and NX mounts. Sony models include Sony A and Sony E. In addition, there are other types of mounts on the market - both branded ( Fujifilm G, Fujifilm X, Hasselblad H, Sigma SA) and universal ( Four Thirds (4/3), Micro 4/3).

Note that there are lenses that are declared compatible with several mounts at once. This “omnivorousness” can be realized in different ways. For example, some models have a non-standard mount on the lens body, and compatibility with various mounts is ensured through the use of adapters; These adapters can be included in the delivery set or purchased separately. Another option is that the lens is available in several separate modifications, each for its own mount. These details should be clarified before purchasing.

Viewing angles

This parameter determines the size of the area of the scene being shot that falls into the frame. The wider the viewing angles, the larger the area the lens can capture in one shot. They are directly related to the focal length of the lens (see "Focal length"), and also depend on the size of the specific matrix with which the optics are used: for the same lens, the smaller the matrix, the smaller the viewing angles, and vice versa. On our website, in the characteristics of optics, viewing angles are usually indicated when used with the matrix for which the lens was originally designed (for more details, see "Matrix Size").

Min. diaphragm

Aperture is a design of several blades-curtains, which allows, if necessary, to reduce the diameter of the active aperture of the lens, actually reducing its aperture (for more details, see "Aperture"). In addition to reducing the light output (which can be relevant, for example, in bright sunlight), closing the aperture has another effect — it increases the depth of field. In other words, “in focus” is a larger volume of space than with an open aperture.

The values on the aperture scale are usually selected from a standard range. The numbers in it actually indicate what aperture the lens will have when the aperture is closed to a given value: for example, an aperture value of 5.6 will correspond to f / 5.6 aperture. The larger the number indicating the minimum aperture value, the more options the photographer has and, accordingly, the possibilities for setting the shooting mode (ceteris paribus).

Internal focus

Lenses using the internal focus system. In such optics systems, focus is carried out only due to the movement of elements inside the lens body; the outer parts remain completely fixed and the size of the lens does not change. This provides additional convenience — in particular, it allows you to easily use petal hoods and those types of filters for which the correct position on the lens is important (in particular, gradient ones). In addition, the absence of moving elements from the outside has a positive effect on security and resistance to dust / precipitation (although the specific degree of dust and water protection may be different).

Image stabilization

The presence in the lens of its own image stabilization system. Such a system includes gyroscopes and movable lenses that compensate for small tremors of the lens and prevent the appearance of “shake”. Stabilization is especially relevant when shooting handheld, especially at slow shutter speeds and/or at long distances with high magnification: it is in such conditions that “shake” affects the quality of the image the most. At the same time, it should be taken into account that the presence of a stabilizer significantly affects the weight, dimensions and, above all, the price of optics; at the same time, some modern cameras have their own stabilization systems (due to matrix shift). Therefore, it makes sense to choose a lens with this function in the case when maximum protection against “shake” is of fundamental importance.

Design (elements/groups)

The number of elements (in fact, the number of lenses) included in the design of the lens, as well as the number of groups in which these elements are combined. Usually, the more elements provided in the design, the better the lens handles with distortions (aberrations) when light passes through it. On the other hand, numerous lenses increases the dimensions and weight of the optics, reduces light transmission (for more details, see "Aperture") and also puts forward increased requirements for the quality of processing, which affects the cost of the lens.

Number of diaphragm blades

The number of blades provided in the design of the diaphragm (for details, see "Minimum aperture"). In fact, this parameter is important when shooting scenes with pronounced bokeh (blurred background) and a small depth of field: the more petals the aperture has, the smoother the glare from out-of-focus objects will turn out, while with a small number of petals they can look like polygons. The number of aperture blades has almost no effect on other shooting parameters. Modern lenses have an average of 7-9 petals; the smoothing provided by them in most cases is considered quite sufficient.
Sigma 105mm f/2.8 OS AF HSM EX DG Macro often compared
Canon 100mm f/2.8 EF USM Macro often compared