Dark mode
USA
Catalog   /   Photo   /   Binoculars & Telescopes   /   Telescopes

Comparison Celestron ExploraScope 70 AZ vs Celestron PowerSeeker 70AZ

Add to comparison
Celestron ExploraScope 70 AZ
Celestron PowerSeeker 70AZ
Celestron ExploraScope 70 AZCelestron PowerSeeker 70AZ
from $139.56 up to $156.80
Outdated Product
from $124.95 
Outdated Product
User reviews
0
0
1
0
TOP sellers
Designlens (refractors)lens (refractors)
Mount typealtazimuthaltazimuth
Specs
Lens diameter70 mm70 mm
Focal length700 mm700 mm
Max. useful magnification140 x165 x
Max. resolution magnification105 x105 x
Min. magnification10 x10 x
Aperture1/101/12
Penetrating power11.6 зв.вел11.7 зв.вел
Resolution (Dawes)1.66 arc.sec2.32 arc.sec
Resolution (Rayleigh)2.79 arc.sec
More features
Finderred dotoptic
Focuserrackrack
Eyepiece bore diameter1.25 "1.25 "
Lens Barlow3 х3 х
Diagonal mirror
General
Tube mountfixing screwsfixing screws
Tube length76 cm
Tripod height132 cm
Total weight2.7 kg3.7 kg
Added to E-Catalogseptember 2016march 2015

Max. useful magnification

The highest useful magnification that the telescope can provide.

The actual magnification of the telescope depends on the focal lengths of the objective (see above) and the eyepiece. Dividing the first by the second, we get the degree of magnification: for example, a system with a 1000 mm objective and a 5 mm eyepiece will give 1000/5 = 200x (in the absence of other elements that affect the magnification, such as a Barlow lens — see below). Thus, by installing different eyepieces in the telescope, you can change the degree of its magnification. However, increasing the magnification beyond a certain limit simply does not make sense: although the apparent size of objects will increase, their detail will not improve, and instead of a small and clear image, the observer will see a large, but blurry one. The maximum useful magnification is precisely the limit above which the telescope simply cannot provide normal image quality. It is believed that, according to the laws of optics, this indicator cannot be more than the diameter of the lens in millimetres, multiplied by two: for example, for a model with an entrance lens of 120 mm, the maximum useful magnification will be 120x2 = 240x.

Note that working at a given degree of multiplicity does not mean the maximum quality and clarity of the image, but in some cases it can be very convenient; see “Maximum resolution magnification"

Aperture

The luminosity of a telescope characterizes the total amount of light "captured" by the system and transmitted to the observer's eye. In terms of numbers, aperture is the ratio between the diameter of the lens and the focal length (see above): for example, for a system with an aperture of 100 mm and a focal length of 1000 mm, the aperture will be 100/1000 = 1/10. This indicator is also called "relative aperture".

When choosing according to aperture ratio, it is necessary first of all to take into account for what purposes the telescope is planned to be used. A large relative aperture is very convenient for astrophotography, because allows a large amount of light to pass through and allows you to work with faster shutter speeds. But for visual observations, high aperture is not required — on the contrary, longer-focus (and, accordingly, less aperture) telescopes have a lower level of aberrations and allow the use of more convenient eyepieces for observation. Also note that a large aperture requires the use of large lenses, which accordingly affects the dimensions, weight and price of the telescope.

Penetrating power

The penetrating power of a telescope is the magnitude of the faintest stars that can be seen through it under perfect viewing conditions (at the zenith, in clear air). This indicator describes the ability of the telescope to see small and faintly luminous astronomical objects.

When evaluating the capabilities of a telescope in terms of this indicator, it should be taken into account that the brighter the object, the smaller its magnitude: for example, for Sirius, the brightest star in the night sky, this indicator is -1, and for the much dimmer Polar Star — about 2. The largest magnitude visible to the naked eye is about 6.5.

Thus, the larger the number in this characteristic, the better the telescope is suitable for working with dim objects. The humblest modern models can see stars around magnitude 10, and the most advanced consumer-level systems are capable of viewing at magnitudes greater than 15—nearly 4,000 times fainter than the minimum for the naked eye.

Note that the actual penetrating power is directly related to the magnification factor. It is believed that telescopes reach their maximum in this indicator when using eyepieces that provide a magnification of the order of 0.7D (where D is the objective diameter in millimetres).

Resolution (Dawes)

The resolution of the telescope, determined according to the Dawes criterion. This indicator is also called the Dawes limit. (There is also a reading of "Daves", but it is not correct).

Resolution in this case is an indicator that characterizes the ability of a telescope to distinguish individual light sources located at a close distance, in other words, the ability to see them as separate objects. This indicator is measured in arc seconds (1 '' is 1/3600 of a degree). At distances smaller than the resolution, these sources (for example, double stars) will merge into a continuous spot. Thus, the lower the numbers in this paragraph, the higher the resolution, the better the telescope is suitable for looking at closely spaced objects. However, note that in this case we are not talking about the ability to see objects completely separate from each other, but only about the ability to identify two light sources in an elongated light spot that have merged (for the observer) into one. In order for an observer to see two separate sources, the distance between them must be approximately twice the claimed resolution.

According to the Dawes criterion, the resolution directly depends on the diameter of the telescope lens (see above): the larger the aperture, the smaller the angle between separately visible objects can be and the higher the resolution. In general, this indicator is similar to the Rayleigh criterion (see "Resolution (Rayleigh)"), however, i...t was derived experimentally, and not theoretically. Therefore, on the one hand, the Dawes limit more accurately describes the practical capabilities of the telescope, on the other hand, the correspondence to these capabilities largely depends on the subjective characteristics of the observer. Simply put, a person without experience in observing double objects, or having vision problems, may simply “not recognize” two light sources in an elongated spot if they are located at a distance comparable to the Dawes limit. For more on the difference between the criteria, see "Resolution (Rayleigh)".

Resolution (Rayleigh)

The resolution of the telescope, determined according to the Rayleigh criterion.

Resolution in this case is an indicator that characterizes the ability of a telescope to distinguish individual light sources located at a close distance, in other words, the ability to see them as separate objects. This indicator is measured in arc seconds (1 '' is 1/3600 of a degree). At distances smaller than the resolution, these sources (for example, double stars) will merge into a continuous spot. Thus, the lower the numbers in this paragraph, the higher the resolution, the better the telescope is suitable for looking at closely spaced objects. However, note that in this case we are not talking about the ability to see objects completely separate from each other, but only about the ability to identify two light sources in an elongated light spot that have merged (for the observer) into one. In order for an observer to see two separate sources, the distance between them must be approximately twice the claimed resolution.

The Rayleigh criterion is a theoretical value and is calculated using rather complex formulas that take into account, in addition to the diameter of the telescope lens (see above), the wavelength of the observed light, the distance between objects and to the observer, etc. Separately visible, according to this method, are objects located at a greater distance from each other than for the Dawes limit described above; therefore, for the same tel...escope, the Rayleigh resolution will be lower than that of Dawes (and the numbers indicated in this paragraph are correspondingly larger). On the other hand, this indicator depends less on the personal characteristics of the user: even inexperienced observers can distinguish objects at a distance corresponding to the Rayleigh criterion.

Finder

The type of finder provided in the design of the telescope.

A seeker is a device designed to point the device at a specific celestial object. The need for such a device is due to the fact that telescopes, due to the high magnification, have very small viewing angles, which greatly complicates visual guidance: such a small area of \u200b\u200bthe sky is visible in the eyepiece that it is possible to determine from these data exactly where the telescope is pointed and where it needs to be turning around is almost impossible. Pointing "on the tube" is very inaccurate, especially in the case of mirror models that have a large thickness and relatively short length. The seeker, on the other hand, has a low magnification (or works without magnification at all) and, accordingly, wide viewing angles, thus playing the role of a kind of “sight” for the main optical system of the telescope.

The following types of finders can be used in modern telescopes:

Optical. Most often, such finders look like a small monocular directed parallel to the optical axis of the telescope. In the field of view of the monocular, markings are usually applied, showing which point in the visible space corresponds to the field of view of the telescope itself. In most cases, optical finders also provide a certain magnification — usually on the order of 5 – 8x, so when working with such systems, usually, the initial pointing of the telescope "...on the tube" is still required. The advantages of optics, as compared to LED finders, are the simplicity of design, low cost, and good suitability for observations in the city, suburbs, and other conditions with fairly bright skies. In addition, such devices do not depend on power sources. Against the background of a dark sky, the markings may be poorly visible, but for such cases there is a specific kind of finders — with an illuminated crosshair. However the backlight requires batteries, but even in the absence of them, the markings remain visible — as in a conventional, non-illuminated finder. Devices of this type are indicated by an index traditional for optics of two numbers, the first of which corresponds to the multiplicity, the second to the diameter of the lens — for example, 5x24.

— With point guidance (LED). This type of seekers is similar in principle to collimator sights: an obligatory design element is a viewing window (in the form of a characteristic glass in a frame), onto which a mark is projected from a light source. This mark can look like a dot or another shape — crosshairs, rings with a dot, etc. The device of such a finder is such that the position of the mark in the window depends on the position of the observer's eye, but this mark always points to the point at which the telescope is pointed. LED finders are more convenient than optical ones in the sense that the user does not have to bring the eye close to the eyepiece — the mark is well visible at a distance of 20 – 30 cm, which makes it easier to point in some situations (for example, if the observed object is located close to the zenith). In addition, such devices are great for working with dark skies. They usually do not have magnification, but this cannot be called a clear disadvantage — for a seeker, a wide field of view is often more important than zoom. But from the unambiguous practical shortcomings, it is worth noting the need for a power source (usually batteries) — without them, the system turns into a useless piece of glass. In addition, collimators as a whole are noticeably more expensive than classical optics, and the mark may be lost against the background of an illuminated sky.

Note that there are telescopes that do not have seekers at all — these are models with a small objective diameter, in which the minimum magnification (see above) is small and provides a fairly wide field of view.

Total weight

The total weight of the telescope assembly includes the mount and tripod.

Light weight is convenient primarily for "marching" use and frequent movements from place to place. However, the downside of this is modest performance, high cost, and sometimes both. In addition, a lighter stand smooths out shocks and vibrations worse, which may be important in some situations (for example, if the device is installed near a railway where freight trains often pass).
Celestron PowerSeeker 70AZ often compared