USA
Catalog   /   Photo   /   Binoculars & Telescopes   /   Binoculars & Monoculars

Comparison Nikon Aculon A211 10x50 vs Olympus 10x50 DPS I

Add to comparison
Nikon Aculon A211 10x50
Olympus 10x50 DPS I
Nikon Aculon A211 10x50Olympus 10x50 DPS I
Compare prices 7
from $103.35 up to $128.00
Outdated Product
TOP sellers
Product typebinocularsbinoculars
Magnification10 x10 x
Optical characteristics
Field of view 1 km away114 m114 m
Apparent angular field59.2 °65 °
Real angle of view6.5 °6.5 °
Min. focus distance7 m6 m
Twilight factor22.422.36
Relative brightness2525
Diopter adjustment
Diopter correction range±5 D
Design
Lens diameter50 mm50 mm
Exit pupil diameter5 mm5 mm
Eye relief11.8 mm12 mm
Focuscentralcentral
Anti reflective coatingmultilayer
PrismPorroPorro
Prism materialBaK-4
Interpupillary adjustment
 /60-70 mm/
Interpupillary distance56 – 72 mm
Design (elements/groups)5 elements in 3 groups
General
Shockproof
Dustproof, water resistant
Case
Tripod adapter
Bodyrubberized plasticrubberized polycarbonate
Size179x197 mm191x178x63 mm
Weight900 g855 g
Color
Added to E-Catalogjune 2014june 2014

Apparent angular field

The angle of view provided by binoculars/monoculars and available to the eye of the observer. This parameter can be described as the angle between the lines connecting the two extreme points of the image visible in the eyepiece with the eye of the observer; in other words, this is the sector actually observed through binoculars (as opposed to the actual angular field of view described below). The greater the value of this parameter, the greater part of the observed space can be seen without turning the instrument. On the other hand, a wide field of view reduces the magnification factor (see above) — or significantly increases the cost of the device compared to more focused ones.

Min. focus distance

The smallest distance to the observed object, at which it will be clearly visible through binoculars / monoculars. All such optical instruments were initially created for observing remote objects, therefore, not all of them are able to work at short distances. When choosing a model for this parameter, one should proceed from the expected observation conditions: ideally, the minimum focus distance should not be greater than the smallest possible distance to the observed object.

Twilight factor

A complex indicator that describes the quality of binoculars / monoculars at dusk — when the illumination is weaker than during the day, but not yet as dim as in the deep evening or at night. It is primarily about the ability to see small details through the device. The need to use this parameter is due to the fact that twilight is a special condition. In daylight, the visibility of small details through binoculars is determined primarily by the magnification of the optics, and in night light, by the diameter of the lens (see below); at dusk, both of these indicators affect the quality. This feature takes into account the twilight factor. Its specific value is calculated as the square root of the product of the multiplicity and the diameter of the lens. For example, for 8x40 binoculars, the twilight factor will be the root of 8x40=320, that is, approximately 17.8. In models with power adjustment (see above), the minimum twilight factor is usually indicated at the lowest magnification, but data is often given for the maximum. The lowest value of this parameter for normal visibility at dusk is considered to be 17. At the same time, it is worth noting that the twilight factor does not take into account the actual light transmission of the system — and it strongly depends on the quality of lenses and prisms, the use of antireflection coatings, etc. Therefore, the actual image quality at dusk for two models with the same twilight factor may differ markedly.

Diopter correction range

The range of values in which diopter adjustment can be made (see above). If you wear glasses with diopters, but plan to look through binoculars / monoculars without them, you should choose a model whose range would correspond to the characteristics of the glasses (or at least be as close as possible to them).

Eye relief

The offset is the distance between the eyepiece lens and the exit pupil of an optical instrument (see "Exit Pupil Diameter"). Optimum image quality is achieved when the exit pupil is projected directly into the observer's eye; so from a practical point of view, offset is the distance from the eye to the eyepiece lens that provides the best visibility and does not darken the edges (vignetting). A large offset is especially important if the binoculars / monoculars are planned to be used simultaneously with glasses — because in such cases it is not possible to bring the eyepiece close to the eye.

Anti reflective coating

Coating is a special coating applied to the surface of the lens. This coating is intended to reduce light loss at the air-glass interface. Such losses inevitably arise due to the reflection of light, and the antireflective coating “turns” the reflected rays back, thus increasing the light transmission of the lens. In addition, this function reduces the amount of glare on objects visible through binoculars/monoculars. There are single-layer, full single-layer, multi-layer, full multi-layer. More details about them:

- Single layer. This marking indicates that one or more lens surfaces (but not all) have a single layer of anti-reflective coating applied to them. This is inexpensive and can be used even in entry-level optical instruments. On the other hand, it filters out a certain spectrum of light, which distorts the color rendition in the visible image - sometimes quite noticeably. In addition, in this case, on some lens surfaces there is no coating at all, which inevitably leads to glare in the field of view. Thus, single-layer coating is the simplest type and is used extremely rarely, mainly in budget models.

- Full single layer. A variation of the single-layer coating described above, in which an anti-reflective coating is present on all surfaces of the lenses (at each air-glass interface). Although this option is al...so characterized by color distortion, it is devoid of another, the most key drawback of “incomplete” enlightenment - glare in the field of view. And the mentioned color distortion is most often not critical. With all this, full single-layer coating is relatively inexpensive, which is why it is very popular in entry-level and entry-mid-level models.

- Multi-layered. A type of coating in which multiple layers of reflective coating are applied to one or more lens surfaces (but not all). The advantage of such a coating over a single-layer coating is that it uniformly transmits almost the entire visible spectrum and does not create noticeable color distortions. The absence of a coating on individual surfaces reduces the cost of the device (compared to full multi-layer coating), but it is impossible to completely get rid of glare in such a system.

- Fully multi-layered. The most advanced and effective of modern types of coating: a multilayer coating is applied to all surfaces of the lenses. This way, high brightness and clarity of the “picture” is achieved, with natural color rendition and no glare. The classic disadvantage of this option is its high cost; Accordingly, full multi-layer coating is typical mainly for high-end models.

Prism material

Material used for prisms found in binoculars and monoculars.

- BK-7. A type of borosilicate optical glass (6LR61), a relatively inexpensive and at the same time quite functional material that provides, although not outstanding, quite acceptable image quality. Used in entry-level and mid-level models.

—BaK-4. Barium optical glass, noticeably superior to BK7 in brightness and image clarity, is however also more expensive. Accordingly, it is found mainly in the premium segment.

Interpupillary distance

Interpupillary distance adjustment range provided in binoculars with the corresponding function.

Recall that, ideally, the interpupillary distance of the device should correspond to the distance between the centers of the pupils of the user himself. With this calculation, it is worth choosing binoculars according to this parameter; and if the device will be used by several people, it is worth making sure that they all “fit” into the adjustment range of the selected model. However, not every person knows exactly their interpupillary distance, especially since it changes with age; and the circle of users can be indefinite — for example, if we are talking about "rolling" binoculars in the hunting industry. In such cases, it is worth proceeding from the following.

In adults of more or less standard physique, the interpupillary distance is in the range from 60 to 66 mm. Modern binoculars cover this range with a margin — even the most modest models support values from 60 to 70 mm, and in most cases the lower limit of the range lies in the region of 54 – 57 mm, and the upper one — 72 – 75 mm. This is quite enough for most adults, including those with a non-standard physique — miniature, or vice versa, large. So a wider range may come in handy only in special cases. For example, if a child will use binoculars, it is desirable that the lower adjustment limit be lower than the standard 50 – 55 mm (in some models, this limit is at the level of 38 mm, or even 34 mm).

Design (elements/groups)

The number of elements that make up the optical system of the binoculars / monocular, as well as the groups in which these elements are combined. Individual lenses are called elements. The more of them are used in the design — the more advanced it is considered, the more various tricks the designers used to build a high-quality image with a minimum of distortion. The same can be said about the number of groups (a group can be called several bonded lenses, or a separately located single lens). On the other hand, the abundance of details complicates the design and makes it more expensive; in addition, image quality depends not only on the quantity, but also on the characteristics of the system components. Therefore, in itself, numerous elements/groups is not an indicator of the high quality of the binoculars/monoculars.
Nikon Aculon A211 10x50 often compared
Olympus 10x50 DPS I often compared