Dark mode
USA
Catalog   /   Computing   /   Networking   /   Wi-Fi Equipment

Comparison MikroTik hAP vs MikroTik hAP Lite Tower

Add to comparison
MikroTik hAP
MikroTik hAP Lite Tower
MikroTik hAPMikroTik hAP Lite Tower
Compare prices 4Compare prices 4
User reviews
0
0
0
1
0
0
0
1
TOP sellers
Product typerouterrouter
Data input (WAN-port)
Ethernet (RJ45)
3G modem (USB)
4G (LTE) modem (USB)
Ethernet (RJ45)
 
 
Wireless Wi-Fi connection
Wi-Fi standards
Wi-Fi 3 (802.11g)
Wi-Fi 4 (802.11n)
Wi-Fi 3 (802.11g)
Wi-Fi 4 (802.11n)
Frequency band
2.4GHz
2.4GHz
Connection and LAN
WAN
1 port
100 Mbps
1 port
100 Mbps
LAN
4 ports
100 Mbps
3 ports
100 Mbps
USB 2.01
Antenna and transmitter
Number of antennas22
Antenna typeinternalinternal
Gain2 dBi
2.4 GHz antennas22
Transmitter power22 dBm
Functions
Features
NAT
firewall
CLI (Telnet)
NAT
firewall
CLI (Telnet)
More features
DHCP server
FTP server
file server
VPN
DMZ
DHCP server
 
 
VPN
DMZ
Security
Safety standards
WPA
WEP
WPA2
WPA
WEP
WPA2
General
PoE (input)passive
PoE (output)passive
Power consumption5 W
Operating temperature-30 °C ~ +70 °C-20 °C ~ +70 °C
Dimensions113x89x28 mm
Color
Added to E-Catalogseptember 2016february 2016

Data input (WAN-port)

Methods for connecting to the Internet (or other external network, such as in bridge mode) supported by the device.

The classic, most common version of such a connection nowadays is LAN (Ethernet), but this is not limited to this. A wired connection can also be made via ADSL or SFP fiber, and wirelessly via mobile networks (using a SIM card, SIM card 5G or an external modem for 3G or 4G), as well as via Wi-Fi. Here is a more detailed description of each option:

— Ethernet (RJ45). Classic wired connection via a network cable via an RJ-45 connector. Also known as "LAN", although this designation is not entirely correct. Nowadays, it is one of the most common methods of wired Internet connection, and is also widely used in local networks. This is due to the fact that the speed of Ethernet is actually limited only by the capabilities of network controllers; at the same time, even the simplest modules support up to 100 Mbps, and in advanced equipment this value can reach 10 Gbps.

— ADSL. A technology primarily used for wired Internet connections over existing landline telephone lines. This is its main advantage — you can use ready-made lines without fiddling with laying numerous addi...tional wires; at the same time, ADSL works independently of telephone calls and does not interfere with them. At the same time, the speed of such a connection is noticeably lower than via Ethernet — even in advanced equipment it does not exceed 24 Mbps. In addition, ADSL traffic is distributed asymmetrically: full speed is achieved only when working for reception, data transmission speed is much lower, which creates problems for video communication and some other tasks. So nowadays, ADSL is gradually being replaced by more advanced standards, although the complete disappearance of this technology is still far away.

— Wi-Fi. Connect to an external data source via Wi-Fi. By definition, this format of operation is used by Wi-Fi adapters (see "Device type"), as well as by most MESH equipment. (However, if the MESH system package includes both nodes and the main control device for them, then the WAN input can be specified for the control device, and often this is not Wi-Fi). Also, this type of data input can be provided in other types of equipment — in particular, routers and access points (for example, to work in bridge or repeater mode).

— 3G modem (USB). Internet connection via 3G mobile network using a separate external modem connected to the USB port. Most often, we are talking about UMTS networks (the development of GSM mobile communications), the most common in Europe and the post-Soviet space; however, it may also be possible to use modems for CDMA networks (EV-DO technology). These nuances, as well as compatibility with specific modem models, need to be clarified separately. However, anyway, 3G may be a good option for situations where a wired Internet connection is difficult or impossible, such as in the private sector. In addition, some Wi-Fi devices with this feature are equipped with autonomous power supplies and can even be used on the go. The data transfer speed of 3G is close to broadband wired connection (from 2 to 70 Mbps with a normal signal, depending on the specific technology); however, it is less than in 4G networks (see below), but 3G coverage is more extensive, and equipment for this standard is cheaper.

— 4G (LTE) modem (USB). Internet connection via 4G mobile network (LTE) using a separate external modem connected to the USB port. The main features are similar to the 3G connection described above, adjusted for the fact that in this case more advanced fourth-generation networks are used. The data transfer rate in such networks reaches about 150 Mbps; they are not as widespread as 3G-connection, but soon we can expect a change in the situation. In addition, it should be noted that in Europe and the post-Soviet space, LTE networks are usually deployed on the basis of 3G UMTS and GSM networks; so in the absence of full-fledged 4G coverage, modems for such networks can work according to the 3G and even GSM standard.

— SIM card. Connecting to the Internet via a mobile network using a mobile operator's SIM card installed directly in the device. The specific type of supported networks depends both on the capabilities of the router and on the conditions of a particular mobile operator; however, all such equipment is compatible with at least 3G networks, and often 4G as well. The features of these networks are described in detail above (you can also read about the advantages of a mobile Internet connection there). This option is convenient because it allows you to do without a separate USB modem — you just need to purchase a SIM card, the cost of which is negligible. In addition, the use of "sim cards" has a positive effect on compactness and ease of carrying. On the other hand, the built-in mobile communication module significantly affects the overall cost — and you will have to pay for it anyway (whereas a model with support for external modems does not have to be bought immediately with a modem, such devices usually allow wired connection). Therefore, you should pay attention to this option if you initially plan to connect to the Internet through mobile networks.

- SIM card (5G). The ability to operate Wi-Fi equipment in high-speed 5G mobile networks with a peak bandwidth of up to 20 Gbps for reception and up to 10 Gbps for data transmission. Implemented via a SIM card with appropriate 5G support. This standard reduces power consumption compared to previous versions, and it also uses a number of complex solutions aimed at improving the reliability and overall quality of communication - in particular, multi-element antenna arrays (Massive MIMO) and beamforming technologies (Beamforming).

— SFP (optics). Connection via fiber optic cable of the SFP standard. Such a connection can be carried out at high speeds (measured in gigabytes per second), and the fiber, unlike the Ethernet cable, is practically insensitive to external interference. On the other hand, the support of this standard is not cheap, and its capabilities are unnecessary for domestic use. Therefore, SFP is found mainly in professional-level Wi-Fi devices.

LAN

In this case, LAN means standard network connectors (known as RJ-45) designed for wired connection of LAN devices — PCs, servers, additional access points, etc. The number of ports corresponds to the number of devices that can be directly connected to wired equipment. way.

In terms of speed, 100 Mbps (Fast Ethernet) and 1 Gbps (Gigabit Ethernet) are the most popular options today. At the same time, thanks to the development of technology, more and more gigabit devices are being produced, although in fact this speed is critical only when transferring large amounts of information. At the same time, some models, in addition to the standard speed of the main LAN ports, may have a 2.5 Gbps, 5 Gbps and even 10 Gbps LAN port with increased bandwidth.

USB 2.0

The number of USB 2.0 ports provided in the design of the device.

USB in this case plays the role of a universal interface for connecting peripheral devices to the router. The specific USB devices supported and how they are used may vary. Examples include working with a flash drive that plays the role of a drive for working in FTP or file server mode (see "Functions / Capabilities"), connecting to a printer in print server mode(see ibid), connecting a 3G modem (See "Data input (WAN-port)"), etc.

Specifically, USB 2.0 allows you to transfer data at speeds up to 480 Mbps. This is noticeably less than that of more advanced standards (starting with USB 3.2 gen1 described below), and the power supply of such connectors is low. However, even such characteristics are often quite enough, taking into account the specifics of the use of Wi-Fi devices. In addition, peripherals for newer versions can also be connected to the USB 2.0 port — the main thing is that the power supply is enough. Therefore, although this standard is considered obsolete, it is still widely used in modern wireless equipment. There are even models that provide 2 or even more USB 2.0 ports; this allows you to simultaneously use several external devices at once — for example, a 3G modem and a USB flash drive.

Gain

Gain provided by each device antenna; if the design provides for antennas with different characteristics (a typical example is both external and internal antennas), then the information, usually, is indicated by the highest value.

Amplification of the signal in this case is provided by narrowing the radiation pattern — just as in flashlights with adjustable beam width, reducing this width increases the illumination range. The simplest omnidirectional antennas narrow the signal mainly in the vertical plane, "flattening" the coverage area so that it looks like a horizontal disk. In turn, directional antennas (mainly in specialized access points, see "Device type") create a narrow beam that covers a very small area, but provides a very solid gain.

Specifically, the gain describes how powerful the signal is in the main direction of the antenna compared to an perfect antenna that spreads the signal evenly in all directions. Together with the power of the transmitter (see below), this determines the total power of the equipment and, accordingly, the efficiency and range of communication. Actually, to determine the total power, it is enough to add the gain in dBi to the transmitter power in dBm; dBi and dBm in this case can be considered as the same units (decibels).

In general, such data is rarely required by the average user, but it can be useful in some specific situations that specialists have to deal with. Detailed calculation methods for suc...h situations can be found in special sources; here we emphasize that it does not always make sense to pursue a high antenna gain. First, as discussed above, this comes at the cost of narrowing the scope, which can be inconvenient; secondly, too strong a signal is also often undesirable, for more details see "Transmitter power".

Transmitter power

Rated power of the Wi-Fi transmitter used in the device. If multiple bands are supported (see “Ranges of operation”) the power for different frequencies may be different, for such cases the maximum value is indicated here.

The total transmitting power provided by the device directly depends on this parameter. This power can be calculated by adding the transmitter power and the antenna gain (see above): for example, a 20 dBm transmitter coupled with a 5 dBi antenna results in a total power of 25 dBm (in the main antenna coverage area). For simple domestic use (for example, buying a router in a small apartment), such details are not required, but in the professional field it often becomes necessary to use wireless devices of a strictly defined power. Detailed recommendations on this matter for different situations can be found in special sources, but here we note that the total value of 26 dBm or more allows the device to be classified as equipment with a powerful transmitter. At the same time, such capabilities are not always required in fact: excessive power can create a lot of interference both for surrounding devices and for the transmitter itself (especially in urban and other similar conditions), as well as degrade the quality of the connection with low-power electronics. And for effective communication over a long distance, both the equipment itself and external devices must have the appropriate power (which is far from alway...s achievable). So, when choosing, you should not chase the maximum number of decibels, but take into account the recommendations for a particular case; in addition, a Wi-Fi amplifier or MESH system often turns out to be a good alternative to a powerful transmitter.

More features

Additional features (mostly software) supported by the device. These may include DHCP server, FTP server, Web server, file server, media server (DLNA), print server, torrent client, VPN support, DDNS support, and DMZ support, among others. Here is a more detailed description of these functions:

— DHCP server. A function that simplifies the distribution of IP addresses connected to the router (or other network equipment) to subscriber devices. Assigning an IP address is necessary for correct operation in TCP / IP networks (and this is the entire Internet and the vast majority of modern “locals”). In the presence of DHCP, this process can be carried out completely automatically, which greatly simplifies the life of both users and administrators. However, the administrator can also set additional DHCP options — for example, specify a range of available IP addresses (to prevent errors) or limit the time of using one address. If necessary, you can even manually enter a specific address for each device on the network, without automatically adding new devices — DHCP also simplifies this procedure, as it allows you to carry out all operations o...n the router without delving into the settings of each subscriber device.

— FTP server. A feature that allows you to use a Wi-Fi device to store files and access them via FTP. This protocol is widely used to transfer individual files both in local networks and over the Internet. Actually, one of the main differences between this function and the file server (see below) is, first of all, the ability to work via the Internet without much difficulty. In addition, FTP is a common standard protocol and is supported by almost any PC, while a file server can use specialized standards. So if you plan to organize file storage with the simplest and most convenient access, you should choose a device with this function. At the same time, we note that “simple” does not mean “uncontrolled”: FTP allows you to set a login and password for accessing files, as well as encrypt transmitted data. The files themselves can be stored both on the built-in storage of a network device, and on a drive connected to it, such as a USB flash drive or external HDD.

— Web server. The ability to use the router as a web server — storage that hosts ("hosts") a website. Note that this can be both an Internet site and an internal resource of the local network, strictly for personal or official use. Placing the site on your own equipment allows you to do without the services of hosting providers and maintain maximum control over the data on the site and its technical base. On the other hand, this feature significantly affects the cost of equipment, and in terms of memory and processing power, Wi-Fi devices are often inferior to dedicated servers, even based on conventional PCs and laptops (although in some models the memory can be expanded with an external drive). So in this case, the web server mode should be considered mainly as an additional option for relatively simple tasks that are not associated with high loads.

— File server. The ability to use a Wi-Fi device as a server for storing files. This function differs from the FTP server described above in the data transfer protocols used; in other words, a "file server" in this case is a network file storage based on any protocols other than FTP. A specific set of such protocols and, accordingly, the functionality of a Wi-Fi device should be specified separately; we only note that most often we are talking about accessing files over a local network (FTP is traditionally used for Internet access), and the files themselves can be stored both in the router’s own memory, and on a flash drive or external hard drive.

— Media server (DLNA). The ability to create a media library using an external USB drive and transfer content from it to other devices on your home network via cable or Wi-Fi. The function is most in demand for broadcasting video, audio files and images to smart TVs and set-top boxes. In general, the technology was conceived in order to be able to combine different devices into a single network and easily share content within this network, regardless of the model and manufacturer of individual devices. Many modern smartphones and tablets, smart home ecosystem devices, etc. have DLNA support.

— Print server. The ability of the device to work as a print server — a computer that controls the printer. This feature allows you to turn a regular printer into a network printer: all network users will be able to send print jobs through a print server, while such a server will also provide a number of additional features. So, sent jobs will be stored on it until they are executed or canceled, regardless of whether the computer from which they were sent is turned on; remote control of the print queue, etc. may be provided. And the use of a router (or other similar device) in this role is convenient because the router is usually turned on and available all the time.

— Torrent client. The presence in the device of its own torrent client or other data exchange protocol (HTTP, FTP, etc.). This feature allows you to work with file-sharing networks, which are built on the principle of "everyone's own server": the downloaded information is not on a separate computer on the network, but on the computers of the same users. At the same time, the same file can be opened for download in several places and the torrent client simultaneously downloads different parts of it from different sources - this significantly increases the speed. Using a torrent client on a device is convenient in two ways. Firstly, it allows you to offload the main computers of users - an important advantage, given that the torrent client can consume a lot of resources, especially with an abundance of simultaneous downloads / distributions. Secondly, network equipment tends to stay on at all times, allowing downloads and uploads to continue even when users' PCs and laptops are turned off. However, it should be taken into account that despite the presence of such functionality in devices, the open placement of content in torrent networks can violate copyrights. Therefore, use torrent clients in compliance with legal regulations.

— VPN (Virtual Private Network) support. Initially, VPN is a function that allows you to combine devices that are physically located in different networks into a single virtual network. The connection is via the Internet, but the data is encrypted to prevent unauthorized access to it. However, routers, access points and MESH equipment (see "Device Type") more often use a slightly different format of work: connecting to the Internet through a separate VPN server, so that all external traffic from the network served by the router goes through this server. Such a connection has a number of advantages. Firstly, additional traffic encryption increases the security of work. Secondly, “outside” in such cases, it is not the real IP address of the user that is visible, but the address of the VPN server, and in the settings you can set the address related to almost any country in the world. This also has a positive effect on security, and also makes it possible to bypass regional restrictions on visiting individual sites and accessing services.
Note that the VPN can also be “raised” on individual devices on the network (for example, through tools in some Internet browsers); however, a VPN router allows all network devices to work in this format, regardless of whether they support VPN or not. This is particularly useful on smart TVs (to access certain video services like Netflix) and on PS and Xbox (to bypass region restrictions on certain games). On the other hand, note that setting up such a connection on a router can be quite difficult, the connection speed can noticeably drop when working through a VPN, and enabling and disabling this feature on a router is usually more difficult than on user devices.

— DDNS. The device supports the DDNS function — assigning a permanent domain name to a device with a changing (dynamic) IP address. For network electronics, the IP address is of key importance, it is he who allows the equipment to send data packets to the right device. However, such addresses are sequences of numbers that are poorly remembered by a person. Therefore, domain names appeared — on the Internet these are web addresses (for example, ek.ua or e-katalog.ru), on the local network — the names of individual devices (for example, "Work laptop" or "Sergey's Computer"). Both on the Internet and in local networks, the connection between a domain name and an IP address is responsible for the so-called DNS servers: for each domain in the database of such a server, its own IP is registered. However, for technical reasons, situations often arise when the router has to use a dynamic (changeable) IP; accordingly, in order for information to be constantly available on the same domain name, it is necessary to update the data on the DNS server with each IP change. It is this update that the DDNS function provides.

— DMZ. Initially, DMZ is a function that allows you to create a segment on the local network with free access from the outside. From the rest of the network, this segment (it is called the DMZ — “demilitarized zone”) is separated by a firewall that allows only specially permitted external traffic to pass through. This provides additional protection against external attacks: in such cases, the DMZ suffers first of all, and access to other network resources is much more difficult for an attacker. One of the most popular ways to use this feature is to provide access to Internet services, the servers of which are physically located in the company's public local area network. However, it is worth noting that in some inexpensive routers, DMZ may mean the DMZ-host mode, which does not provide any additional protection and is used for completely different purposes (mainly to translate all ports to another network device). So the specific format of DMZ operation needs to be specified separately, especially if you are purchasing a low-cost category device.

PoE (input)

By itself, PoE (Power over Ethernet) technology makes it possible to transfer not only data over an Ethernet network cable, but also energy to power network devices. And the presence of a PoE input allows Wi-Fi equipment to receive power in a similar way. Usually, the function of such an input is performed by the Uplink input (or one / several of these inputs, if there is more than one); accordingly, the power source when using PoE is usually higher-level network equipment. Also note that there are special devices — the so-called PoE injectors — that allow you to add power to a regular network signal (that is, add PoE support to equipment that does not initially have such a function).

As for the PoE standards, they determine both the power supply and the main possibilities for coordinating the power source with the consumer — both must support the same standard, otherwise normal operation will be impossible. At the same time, formats that are marked like “802.3*” are called active; their common feature is that when a load is connected, the power supply first “interrogates” it, checking whether the powered device complies with the requirements of the corresponding standard, and if so, what kind of power should be supplied to it. There is no such feature in the passive standard. And here is a more detailed description of specific options:

— 802.3at. A standard originally released back in 2009 and known as PoE +, or PoE ty...pe 2. The standard power received at such an input is 25.5 W, with a voltage of 42.5 to 57 V and a current in a pair of up to 600 mA.

— 802.3af/at. This marking means that the PoE input supports both the 802.3at standard described above and the earlier 802.3af (PoE type 1). The second format is noticeably more modest in terms of capabilities: it provides power at the power input up to 13 W, input voltage 37 – 57 V and current in a pair of power wires up to 350 mA. Despite their "venerable age", many devices with 802.3af outputs are still in use today; so for the power input, compatibility with this standard may be useful. We only note that 802.3af covers as many as four so-called power classes (from 0 to 3), which differ in the specific number of watts at the output and input. So when connecting power from a device with this PoE standard, it's ok to further clarify compatibility by power class.

— 802.3bt. PoE 802.3bt standard, also known as PoE++, increases power consumption over an Ethernet cable to 90 W, supports four-pair power delivery, and features reduced power consumption in standby mode. The 802.3bt version is split into two separate branches: Type 3 and Type 4 (the first two types are the earlier editions of 802.3af and 802.3at, which are backward compatible). When connected to type 3 power supply equipment, power is provided via one Ethernet cable with an input power of 51 to 60 W, a voltage in the range of 42.5 - 57 V and a current in the supply wires of up to 600 mA. Type 4 provides increased power and current values: 71 – 90 W and 960 mA, respectively. In the passive version, the input of equipment supporting PoE 802.3bt is supposed to be supplied with power from a passive source. See below for more details.

— Passive. The most simple and inexpensive standard, designed to be used mainly in entry-level equipment (since the implementation of active PoE standards is generally expensive). As mentioned above, the key difference from the formats described above is that the power supply supplies energy "as is" — with a strictly fixed voltage and power, without checking the characteristics of the load and without adjusting to it. This is what ensures low price and availability. On the other hand, when using a passive PoE input, care must be taken to ensure that the voltage and power of the power supply match the characteristics of the connected device; and such coordination can be quite difficult in light of the fact that the passive standard does not have strictly defined standards even for voltage, not to mention power. At the same time, the inconsistency leads to the fact that in the best case (if the output voltage / power is lower than those required for the load), the power simply will not work, and in the worst case (with excess voltage / power), there is a high probability of overloads, overheating, and even breakdowns with fires — moreover such troubles may not occur immediately, but after a fairly considerable time. So you should pay attention to this option first of all in cases where simplicity and accessibility are more important than advanced nutrition standards. At the same time, we note that some switches, which, in addition to the passive input, also have a passive PoE output, allow “cascade” connection — in the form of a serial chain of several devices powered by one external source (the main thing is that this source has enough power).

Separately, we emphasize that you should not try to connect an active power source to a passive input, and even more so vice versa.

PoE (output)

The PoE (Power over Ethernet) technology itself allows you to transmit not only data, but also energy to power network devices via an Ethernet network cable. And the presence of a PoE output(s) makes it possible to power such devices from the network connectors of a router or access point. This eliminates the need to lay additional wires or use independent power supplies. And when using so-called splitters - devices that separate the PoE cable signal into purely network data and supply power - using such outputs you can also power equipment that does not initially support PoE (the main thing is that their power characteristics match the capabilities of the switch).

As for PoE standards, they determine not just the overall power supply, but also compatibility with specific devices: the consumer must support the same standard, otherwise normal operation will be impossible. Nowadays, including in switch connectors, you can find two types of such standards - active and passive. The main difference between these varieties is that active PoE provides for matching the power source and load in terms of voltage and power; passive PoE does not have such functions, and energy is supplied “as is”, without adjustments. Here is a more detailed description of specific standards:

- 802.3af. The oldest active PoE power format in use today. Provides power output power up to 15 W (at the consumer input - up to 13 W), output voltage 44 -...57 V (input - 37 - 57 V) and power in a pair of supply wires up to 350 mA. Despite its “venerable age”, it still continues to be widely used. However, it is worth considering that this standard covers 4 so-called power classes (from 0 to 3), differing in the maximum number of watts at the output and input. So when using 802.3af, it doesn't hurt to make sure that the output power is sufficient for the selected load.

- 802.3at. The next branch, which combines two standards at once - the 802.3af described above and the newer 802.3at. The latter allows you to supply power up to 30 W to the output (up to 25.5 W at the input of the powered device), uses a voltage of 50 - 57 V (42.5 - 57 V at the input), while the power in a pair of wires does not exceed 600 mA. This combination is relatively inexpensive, but it makes it possible to power a wide variety of external devices.

- 802.3bt. The 802.3bt PoE power standard is divided into two separate branches: Type 3 and Type 4 (the first two types are the earlier versions of 802.3af and 802.3at). When working with type 3 power supply equipment, power is provided via one Ethernet cable with an output power of up to 60 W (at the consumer input - up to 51 W), an output voltage of 50 - 57 V (input - 42.5 - 57 V) and power in supply wires up to 600 mA. The 4th type provides increased power and power values: up to 90 W output power (71 W at the consumer input) and power up to 960 mA. At the same time, the PoE 802.3bt standard is characterized by reduced power consumption during standby.

- Passive. As already mentioned, the key difference between passive PoE and the active standards described above is that in this case the power output produces a strictly fixed power, without any automatic adjustments or adjustments for a specific device. The main advantage of this standard is its low cost: its implementation is much cheaper than active PoE, so such ports can be found in entry-level devices. On the other hand, the aforementioned lack of auto-tuning makes it much more difficult to coordinate equipment with each other - especially in light of the fact that different devices can differ significantly in the output/consumed voltage and power (power). Because of this, when using passive PoE, you need to pay special attention to the compatibility of the source and load in these parameters. If there is no match, then in the best case (if the voltage/power at the output is lower than required) the power simply will not work, and in the worst case (if there is excess voltage/power) there is a high probability of overloads, overheating and even breakdowns with fires - and such troubles may not occur immediately, but after quite a considerable time. And you definitely cannot connect devices with active inputs to passive PoE outputs - for the same reasons.

Power consumption

Power consumed by network equipment during operation. Knowing the indicator of energy consumption, you can, for example, calculate the battery life of equipment from an uninterruptible power supply or choose a suitable “uninterruptible power supply”. Also, with the support of PoE technology, it is worth considering the power consumption when choosing a PoE switch or PoE adapter.
MikroTik hAP often compared
MikroTik hAP Lite Tower often compared