Dark mode
USA
Catalog   /   Tools & Gardening   /   Machines & Equipment   /   Welders

Comparison Paton VDI-200E vs Paton VDI-160E

Add to comparison
Paton VDI-200E
Paton VDI-160E
Paton VDI-200EPaton VDI-160E
from $122.80 up to $179.96
Outdated Product
from $103.40 up to $151.96
Outdated Product
User reviews
0
0
0
3
0
0
0
3
TOP sellers
Typeinverterinverter
Welding type
MMA
MMA
Specs
Welding currentDCDC
Input voltage230 V230 V
Power consumption6.9 kW5.5 kW
Open circuit voltage80 V80 V
Min. welding current25 А20 А
Max. welding current200 А160 А
Max. welding current (duty cycle 100%)126 А101 А
Duty cycle40 %40 %
Max. electrode size5 mm4 mm
More features
Hot Start
Arc Force
Anti-Stick
Hot Start
Arc Force
Anti-Stick
General
Protection class (IP)2121
Electrode holder cable3 m3 m
Mass cable3 m3 m
Dimensions (HxWxD)200x100x265 mm200x100x245 mm
Weight4.5 kg4.2 kg
Added to E-Catalogseptember 2015september 2015

Power consumption

The maximum power consumed by the welding machine during operation, expressed in kilowatts (kW), that is, thousands of watts. In addition, the designation in kilovolt-amperes (kVA) can be used, see below for it.

The higher the power consumption, the more powerful the current the device is capable of delivering and the better it is suitable for working with thick parts. For different materials of different thicknesses, there are recommendations for current strength, they can be clarified in specialized sources. Knowing these recommendations and the open circuit voltage (see below) for the selected type of welding, it is possible to calculate the minimum required power of the welding machine using special formulas. It is also worth considering that high power creates corresponding loads on the wiring and may require connection directly to the shield.

As for the difference between watts and volt-amperes, the physical meaning of both units is the same — current times voltage. However, they represent different parameters. In volt-amperes, the total power consumption is indicated — both active (going to do work and heat individual parts) and reactive (going to losses in coils and capacitors). This value is more convenient to use to calculate the load on the power grid. In watts, only active power is recorded; according to these numbers, it is convenient to calculate the practical capabilities of the welding machine.

Min. welding current

The smallest current that the device is able to supply through the electrodes during operation. For different materials, different thicknesses of the parts to be welded and different types of welding itself, the optimal welding current will be different; there are special tables that allow you to determine this value. The general rule is that a high current is far from always useful: it gives a rougher seam; when working with thin materials, it is possible to melt through the junction instead of connecting the parts, not to mention excessive energy consumption. Therefore, if you have to work with parts of small thickness (2-3 mm), before choosing a welding machine, it makes sense to make sure that it is capable of delivering the desired current without “busting”.

Max. welding current

The highest current that the welding machine is capable of delivering through the electrodes during operation. In general, the higher this indicator, the thicker the electrodes the device can use and the greater the thickness of the parts with which it can work. Of course, it does not always make sense to chase high currents — they are more likely to damage thin parts. However, if you have to deal with large-scale work and a large thickness of the materials to be welded, you simply cannot do without a device with the appropriate characteristics. Optimum welding currents depending on materials, type of work (see "Type of welding"), type of electrodes, etc. can be specified in special tables. As for specific values, in the most “weak” models, the maximum current does not even reach 100 A, in the most powerful ones it can exceed 225 A and even 250 A.

Max. welding current (duty cycle 100%)

The highest welding current at which the machine is able to operate with a duty cycle of 100%.

See below for more information on the frequency of inclusion (PV). Here we recall that “100% duty cycle” means continuous operation, without shutdowns for cooling. Thus, the maximum welding current at 100% duty cycle is the highest current at which the machine can be used without interruption. Usually, this current is much lower than the maximum.

Max. electrode size

The largest diameter of the electrode that can be installed in the welding machine. Depending on the thickness of the parts, the material from which they are made, the type of welding (see above), etc. the optimal electrode diameter will be different; there are special tables that allow you to determine this value. Large diameter may be required for thick materials. Accordingly, before purchasing, you should make sure that the selected model will be able to work with all the necessary electrode diameters.

In modern welding machines, an electrode diameter of 1 mm or less is considered very small, 2 mm — small, 3 mm and 4 mm — medium, and powerful performant models use electrodes of 5 mm or more.
Paton VDI-200E often compared
Paton VDI-160E often compared