USA
Catalog   /   Tools & Gardening   /   Machines & Equipment   /   Welders

Comparison SSVA 160-2 vs SSVA 180-P

Add to comparison
SSVA 160-2
SSVA 180-P
SSVA 160-2SSVA 180-P
from $228.00 up to $276.00
Outdated Product
from $352.00 up to $468.00
Outdated Product
TOP sellers
Typesemi-automatic invertersemi-automatic inverter
Welding type
MMA
MIG/MAG
TIG
MMA
MIG/MAG
TIG
Specs
Welding currentDCDC
Input voltage230 V230 V
Power consumption6.7 kW5.5 kW
Open circuit voltage50 V
Min. welding current5 А5 А
Max. welding current190 А180 А
Max. welding current (duty cycle 100%)135 А135 А
Duty cycle60 %60 %
Max. electrode size4 mm4 mm
Minimum wire diameter0.6 mm0.6 mm
Max. wire diameter1 mm1 mm
Wire feed speed10 m/min
More features
Hot Start
Anti-Stick
digital display
car engine start
Hot Start
Anti-Stick
digital display
car engine start
Coil locationexternalinternal
Detachable welding cable (MIG/MAG)removableremovable
General
Protection class (IP)2121
Insulation classFF
Torch cable3 m3 m
Dimensions (HxWxD)230x150x470 mm340x220x460 mm
Weight10 kg15 kg
Added to E-Catalogjuly 2015june 2015

Power consumption

The maximum power consumed by the welding machine during operation, expressed in kilowatts (kW), that is, thousands of watts. In addition, the designation in kilovolt-amperes (kVA) can be used, see below for it.

The higher the power consumption, the more powerful the current the device is capable of delivering and the better it is suitable for working with thick parts. For different materials of different thicknesses, there are recommendations for current strength, they can be clarified in specialized sources. Knowing these recommendations and the open circuit voltage (see below) for the selected type of welding, it is possible to calculate the minimum required power of the welding machine using special formulas. It is also worth considering that high power creates corresponding loads on the wiring and may require connection directly to the shield.

As for the difference between watts and volt-amperes, the physical meaning of both units is the same — current times voltage. However, they represent different parameters. In volt-amperes, the total power consumption is indicated — both active (going to do work and heat individual parts) and reactive (going to losses in coils and capacitors). This value is more convenient to use to calculate the load on the power grid. In watts, only active power is recorded; according to these numbers, it is convenient to calculate the practical capabilities of the welding machine.

Open circuit voltage

The voltage supplied by the welding machine to the electrodes. As the name suggests, it is measured without load — i.e. when the electrodes are disconnected and no current flows between them. This is due to the fact that at a high current strength characteristic of electric welding, the actual voltage on the electrodes drops sharply, and this does not make it possible to adequately assess the characteristics of the welding machine.

Depending on the characteristics of the machine (see "Type") and the type of work (see "Type of welding"), different open circuit voltages are used. For example, for welding transformers, this parameter is about 45 – 55 V (although there are higher voltage models), for inverters it can reach 90 V, and for semi-automatic MIG / MAG welding, voltages above 40 V are usually not required. Also, the optimal values \u200b\u200bdepend on type of electrodes used. You can find more detailed information in special sources; here we note that the higher the open-circuit voltage, the easier it is usually to strike the arc and the more stable the discharge itself.

Also note that for devices with the VRD function (see "Advanced"), this parameter indicates the standard voltage, without reduction through VRD.

Max. welding current

The highest current that the welding machine is capable of delivering through the electrodes during operation. In general, the higher this indicator, the thicker the electrodes the device can use and the greater the thickness of the parts with which it can work. Of course, it does not always make sense to chase high currents — they are more likely to damage thin parts. However, if you have to deal with large-scale work and a large thickness of the materials to be welded, you simply cannot do without a device with the appropriate characteristics. Optimum welding currents depending on materials, type of work (see "Type of welding"), type of electrodes, etc. can be specified in special tables. As for specific values, in the most “weak” models, the maximum current does not even reach 100 A, in the most powerful ones it can exceed 225 A and even 250 A.

Wire feed speed

Wire feed speed provided by the semi-automatic model (see "Type"). The higher the speed (with the same thickness) — the faster you can lead the electrode over the seam and the less time the process takes. On the other hand, too fast feed makes it difficult to work with seams of small length. Detailed information on the optimal wire feed speed can be found in special sources.

Coil location

The location of the wire feed spool.

The wire is used in semi-automatic welding (see "Type of welding"); the coil on which it is wound can be located both outside the device and inside. There is no fundamental difference in the design of the feed mechanism, in efficiency and in other operating parameters between the "external" and "internal" models, they differ mainly in the features of storage and transportation. For example, the built-in coil increases the size and weight of the entire device, but it does not need to be carried separately.
SSVA 160-2 often compared
SSVA 180-P often compared