Installation
The regular way to install a water heater.
The choice for this parameter depends primarily on how much free space is available for installing the device and what shape this space has. Therefore, when there is a lot of space (for example, the user has an entire wall in the boiler room of a private house at his disposal), this parameter can be ignored. But in cramped conditions, each installation method will have its nuances.
—
Vertical. Vertical arrangement devices, elongated in height. This option is well suited for narrow cramped spaces — for example, a bathroom in a small city apartment.
—
Horizontal. The horizontal layout is less suitable for tight spaces than the vertical one but in some conditions, it may be optimal — for example, if the place under the device looks like a low horizontal niche. Also, note that many instant water heaters are produced in this design (see "Type") — they do not take up much space, and horizontal orientation is considered optimal for such devices for several reasons.
—
Floor. Floorstanding models (as opposed to all of the wall mount options described above). The main advantage of such an installation is simplicity: there is no need to drill walls and prepare other special fasteners; it is enough to have free space on the floor. In addition, weight restrictions are not so critical for floor water h
...eaters, and this method can be used even for the most powerful, capacious and, accordingly, large models. On the other hand, free space on the floor is not always available, and this installation method is not suitable for cramped conditions.
— Universal (wall mounted). Devices that can be placed in any position — both horizontal and vertical (see above for details). The advantage of this option is obvious: the user can choose the installation method of his choice, depending on the situation.Tank volume
The volume of the tank installed in the storage water heater (see "Type"). It is one of the key parameters for such devices. On the one hand, a large tank allows you to keep a large supply of water and reduces the risk that it will run out at the most inopportune moment; this is especially important when water consumption is high, such as in a large family. On the other hand, a volumetric tank correspondingly increases the size, weight and cost of the entire device, requires reliable fastenings (when installed on a wall), and more energy is spent on heating and maintaining the temperature of the water in it. Accordingly, when choosing, it is worth not chasing the maximum volume but proceeding from the actual water consumption and this point of view determining the optimal capacity of the tank.
Some special tables and formulas allow you to calculate the optimal volume of the tank depending on the format of use (washbasin, shower, kitchen sink ...), the temperature of the water used and other parameters. These data can be found in special sources. Here we note that the smallest storage water heaters can hold only 5 litres; such devices are designed for washing, washing dishes for 1 – 2 people and other tasks that do not require a lot of water. The average value is considered to be a volume of 80 – 100 litres, such a tank is quite enough for an apartment in which 3 – 4 people live. In the largest models, the volume is already calculated in cubic metres; such water he...aters are designed, for example, for hotel buildings, showers in sports complexes and swimming pools, and other similar places where a lot of hot water is required.
2 tanks
The presence
of 2 water tanks in the storage water heater; usually, the total volume is divided equally between these tanks.
This design is noticeably more complex and expensive than the traditional 1-tank arrangement but offers several advantages. Firstly, the tanks can be heated in turn, which significantly speeds up the process. After all, for hot water to be used, it is enough to warm up only half of the total volume to the operating temperature. Secondly, with this format of work, power consumption and the load on the power grid are reduced. And if at a certain moment, the user does not need a lot of water, then the energy consumption turns out to be small (again, because the entire volume does not need to be heated). Thirdly, compared to traditional models of the same volume, such boilers are thinner, which can simplify installation (the price for this advantage is an increase in width, but this moment is not so often critical). Fourth, this arrangement improves thermal insulation and reduces heat loss.
Energy efficiency class
This parameter characterizes the efficiency of electricity consumption by the water heater. Classes are indicated by latin letters from A to G (
A,
B,
C,
D), where A is the most energy efficient device.
Power consumption
Electrical power consumed by the heater during operation.
This parameter is of key importance for electric models (see "Energy source"). In them, the power consumption corresponds to the power of the heating element and, accordingly, the heat output of the entire device. The overall efficiency and flow rate of the water heater directly depend on the useful power. Accordingly, high-flow rate models inevitably have high consumption. At the same time, we note that the heating power is selected by the designers in such a way as to guarantee the necessary flow rate and water temperature. So when choosing a device according to flow rate, you need to look primarily at flow rate and temperature. Power must be taken into account when connecting: for example, if a 220 V model (see "Power source") consumes more than 3.5 kW, it, as a rule, cannot be plugged into a regular outlet — connection is required according to special rules. And the most productive and high-powered models — 10 kW or more — are connected only to three-phase mains.
The power consumption has a similar value for combined boilers — adjusted for the fact that in them the electric heater is an additional source of heat. For gas and indirect models, this parameter describes the power consumption of control circuits and other auxiliary structural elements; this power consumption is usually very small — on the order of several tens of watts, less often up to 1.5 kW.
Max. water temperature
The highest water temperature provided by the device. The standard temperature of hot water in the water supply is 60 °C, and this value is actually the minimum for modern water heaters: models with more modest rates (usually from 40 °C) are extremely rare. But higher values can be found much more often: for example,
water heaters of 75 °C and
80 °C are very popular, and in the most powerful models in this regard, the temperature can reach
95 °C and even higher.
On the one hand, strong heating requires appropriate power (which is especially noticeable in the case of instant electric heaters). On the other hand, the higher the temperature of hot water, the less it is needed for a comfortable outlet temperature, after mixing with cold water; this reduces the consumption of heated water, which is especially important for storage boilers. In addition, many models have thermostats (see "Features").
Also, note that heating to operating values may involve different ΔT (degree of temperature change) — depending on the initial temperature of the cold water. The actual performance of the heater directly depends on ΔT; this moment is described in more detail below, in the paragraphs devoted to performance at different ΔT.
Tank lining
—
Enamel. Like plastic, enamel is chemically neutral and does not affect the taste and smell of water, while it is considered more durable. Theoretically, this material is prone to the appearance of microcracks, including due to temperature differences (which eventually lead to water contact with metal and corrosion). However, high-quality heat-resistant enamels are most often used in boilers, which have the same coefficient of thermal expansion as the material of the tank and are damaged only in case of violation of operating conditions (or with strong impacts). So the mentioned drawback is typical mainly for the most inexpensive models with appropriate quality materials.
—
Stainless steel. Due to its high strength, stainless steel is considered the most reliable and durable material today. Unlike enamelled ones, such tanks are absolutely not afraid of temperature changes, and they also normally withstand hits including pretty strong ones. On the other hand, steel is noticeably more expensive than enamel. At the same time, for such containers, the possibility of corrosion is not ruled out — especially when it comes to cheap devices that use outdated welding technologies, and the material of the seams may differ from the material of the tank. To eliminate this phenomenon, cathodic protection is required, which further affects the cost.
—
Glass ceramics.
...Material, in many respects similar to the enamel described above. On the one hand, glass ceramic does not react with water, does not affect its taste and properties, and is also considered quite reliable. On the other hand, this material is more brittle and prone to the appearance of microcracks and the loss of its properties — both as it wears out and due to strong heating. Because of this, such water heaters usually have a recommended temperature limit of 60 °C.
— Plastic. Plastic is chemically resistant, not subject to corrosion and practically does not affect the composition of water, besides it is inexpensive. The main disadvantage of plastic coating is considered to be fragility.
— Copper. Copper coating is used exclusively in instant water heaters (see "Type"); more precisely, in such devices, the entire tank is usually made of copper. This material is not suitable for a storage tank: copper is too heavy, and it has a corrosive effect on some materials (aluminium, cast iron) due to its electrochemical properties, even if these materials are used outside the heater, in other parts of the water supply system. However, in a small tank in an instant water heater, these moments are invisible, while copper perfectly tolerates compression and tension during temperature changes.
— Titanium-cobalt alloy. A special alloy, characterized by the highest strength and resistance to corrosion, but also very expensive. It is extremely rare, only in top-level heaters.Heating time
Time to heat the storage tank (see "Type"), filled with cold water, to operating temperature.
It is worth remembering that this characteristic is not 100% accurate. Manufacturers usually indicate the heating time for certain conditions: a filled tank, maximum heating intensity, and temperature rise (∆T) by a certain number of degrees. In practice, the heating time may differ, both one way and the other. For example, if the heating time for the device is 20 minutes at ∆T = 50 °C, then when the water is heated from 15 °C to 60 °C, the time will be shorter (∆T = 45 °C). Nevertheless, this indicator allows us to evaluate the overall flow rate of the boiler, and with equal ∆T and volumes, different models can be compared in terms of heating time.
Heating elements
The number of heating elements provided in the design of the water heater. In this case, it is the total number of elements that are taken into account, regardless of whether they belong to the same type or different ones: for example, 2 heat exchangers and 1 heating element are considered as 3 elements.
All gas models (see "Energy source") have only one heating element — this is quite enough for efficient operation. In
combined devices (see ibid.), on the contrary, there are several heating elements by definition (at least two — a heat exchanger and an electric one). In electric and indirect water heaters, the options may be different.
The meaning of several heaters of the same type is primarily to increase the heating efficiency. For example, in an instant (see "Type") electrical water heater, in this way, it is possible to increase the working length — the distance that water passes inside the device from inlet to outlet; by increasing the working length, the water is heated longer. In storage electric models, several heaters provide more uniform heating of the water, and in indirect ones, they allow more heat to be taken away. In addition, in indirect devices, heat exchangers can differ in the source of heating: for example, one can work from a heating boiler, the second from a solar collector.
Also, note that duplication of heating elements can also be used as protection against failures: if one of them
...fails, the heating efficiency decreases, but the device remains operational. However, this possibility is not available in all models with several heaters, its presence should be clarified separately.