Dark mode
USA
Catalog   /   Climate, Heating, Water Heating   /   Water Supply & Pumps   /   Pressure Tank Units

Comparison AL-KO HWA 4500 Comfort vs AL-KO HW 4000 FCS Comfort

Add to comparison
AL-KO HWA 4500 Comfort
AL-KO HW 4000 FCS Comfort
AL-KO HWA 4500 ComfortAL-KO HW 4000 FCS Comfort
from $209.73 up to $275.96
Outdated Product
from $215.57 up to $279.96
Outdated Product
User reviews
1
0
0
0
1
0
0
0
TOP sellers
Suitable forclean waterclean water
Specs
Maximum performance4500 L/h4000 L/h
Maximum head50 m45 m
Max. pressure5 bar3.5 bar
Pump typecentrifugalcentrifugal
Suction typeself-priming
Suction height8 m8 m
Maximum particle size0.2 mm
Maximum liquid temperature35 °С35 °С
Volume of water pressure tank17 L17 L
Suction systemsingle-stagesingle-stage
Outlet size1"1"
Inlet hole size1"1"
Engine
Maximum power1300 W1000 W
Power sourceelectricelectric
Mains voltage230 V230 V
Power cord length1.5 m
General specs
Noise level81 dB80 dB
Protection class (IP)X4X4
Country of originGermanyGermany
Pump housing materialplasticplastic
Impeller / auger materialstainless steelstainless steel
Water pressure tank materialsteelsteel
Dimensions476x208x350 mm478x284x647 mm
Weight11.5 kg17.9 kg
Added to E-Catalogapril 2015october 2014

Maximum performance

The maximum volume of water that the device can pump in a certain amount of time. It is one of the key specs of any pump because characterizes the volume of water with which the device can work. At the same time, it does not always make sense to pursue maximum performance — after all, it significantly affects the dimensions and weight of the unit.

Some formulas allow you to derive optimal performance values for different situations. So, if the pump is designed to supply water to water intake points, its minimum required performance should not be lower than the highest total flow rate; if desired, a margin of 20-30% can be added to this value. And for sewer models (see "Suitable for"), everything will depend on the volume of wastewater. More detailed recommendations for choosing a pump depending on performance can be found in special sources.

Maximum head

The maximum head generated by the pump. This parameter is most often indicated in meters, by the height of the water column that the unit can create — in other words, by the height to which it can supply water. You can estimate the pressure created by the pump using a simple formula: every 10 m of head corresponds to a pressure of 1 bar.

It is worth choosing a pump according to this parameter, taking into account the height to which it should supply water, as well as adjusting for losses and the need for pressure in the water supply. To do this, it is necessary to determine the difference in height between the water level and the highest point of water intake, add another 10 to 30 m to this figure (depending on the pressure that needs to be obtained in the water supply), and multiply the result by 1.1 — this will be the minimum pressure required.

Max. pressure

The highest pressure that the pump is capable of creating during operation. This parameter is directly related to the maximum head (see above); however, it is less obvious, and therefore, it is indicated rarely.

Suction type

The main division in this parameter is related to whether the pump can remove air from the suction line. This, in turn, determines the features of starting the unit.

— Self-priming. Self-priming pumps include all pumps that do not require the complete absence of air in the suction line at startup — it is enough that the pump itself is filled with water. Accordingly, such models are less demanding and normally tolerate air entering the line. However, this requires a reliable design that can normally withstand water hammer, which accordingly affects the cost of the unit.

— Priming. Pumps with this device can only work normally when both the unit body and the suction line are filled with water. If air enters the line, it must be removed or the pump will not be able to start normally. Such models are not as convenient as self-priming ones; at the same time, they are noticeably cheaper, and with the normal quality of the water supply system, there is practically no significant difference between the two varieties.

Maximum particle size

The largest particle size that the pump can handle without problems. This size is the main indicator that determines the purpose of the device (see above); and in general, the larger it is, the more reliable the device, the lower the risk of damage if a foreign object enters the suction line. If the risk of the appearance of too large mechanical impurities is still high, additional protection can be provided with filters or grids at the inlet. However, such a measure should be considered only as a last resort, because from constant exposure to solid particles, the grids become clogged and deformed, which can lead to both clogging of the line and filter breakthrough.

Maximum power

Rated power of the pump motor. The more powerful the engine, the higher the performance of the unit, usually, the greater the pressure, suction height, etc. Of course, these parameters largely depend on other features (primarily the pump type, see above); but models similar in design can be compared in terms of power.

Note that high power, usually, increases the size, weight and cost of the pump, and also implies high costs of electricity or fuel (see "Power source"). Therefore, it is worth choosing a pump according to this parameter taking into account the specific situation; more detailed recommendations can be found in special sources.

Power cord length

The length of the cable that supplies electricity to the pump with the appropriate type of power supply (see above). The longer the cable the farther from the socket or other power source you can install the pump. This parameter is especially important for submersible models: if the cable is too short, it will simply be impossible to lower the pump to the maximum depth provided for by its design, because ordinary extension cords cannot be immersed in water.

Noise level

The noise level produced by the pump during normal operation. For comparison, 50 decibels roughly corresponds to the noise in an office room, 60 dB to an average TV volume, 70 dB to a truck at a distance of about 8 m, 80 dB to traffic noise, and 90 dB to a scream. The lower the noise level, the more comfortable the use of the pump and the closer it can be placed to people. This parameter is especially important for models designed for indoor installation.
AL-KO HWA 4500 Comfort often compared
AL-KO HW 4000 FCS Comfort often compared