USA
Catalog   /   Computing   /   Components   /   Motherboards

Comparison ASRock A320M-HDV vs ASRock A320M-DGS

Add to comparison
ASRock A320M-HDV
ASRock A320M-DGS
ASRock A320M-HDVASRock A320M-DGS
Compare prices 2
from $69.00 
Outdated Product
TOP sellers
Main
Compatible with Ryzen and Bristol Ridge processors. High frequency RAM. Three video outputs. Does not support CPU overclocking. Only two RAM slots.
Support for Bristol Ridge processors. Raven Ridge and Ryzen. Overclocking RAM. M.2 slot.
Featuresfor home/officefor home/office
SocketAMD AM4AMD AM4
Form factormicro-ATXmicro-ATX
Power phases7
Size (HxW)231x206 mm231x206 mm
Chipset
ChipsetAMD A320AMD A320
BIOSAmiAmi
UEFI BIOS
RAM
DDR42 slot(s)2 slot(s)
Memory moduleDIMMDIMM
Operation mode2 channel2 channel
Max. clock frequency3200 MHz3200 MHz
Max. memory32 GB32 GB
Drive interface
SATA 3 (6Gbps)44
M.2 connector11
M.21xSATA/PCI-E 4x1xSATA/PCI-E 4x
Integrated RAID controller
 /RAID 0, RAID 1, RAID 10/
 /RAID 0, RAID 1, RAID 10/
Expansion slots
1x PCI-E slots11
PCI-E 16x slots11
PCI Express3.03.0
Internal connections
USB 2.022
USB 3.2 gen111
Video outputs
D-Sub output (VGA)
DVI outputDVI-DDVI-D
HDMI output
Integrated audio
AudiochipRealtek ALC887Realtek ALC887
Sound (channels)7.17.1
Network interfaces
LAN (RJ-45)1 Gbps1 Gbps
LAN ports11
LAN controllerRealtek RTL8111GRRealtek RTL8111GR
External connections
USB 2.022
USB 3.2 gen144
PS/211
Power connectors
Main power socket24 pin24 pin
CPU power4 pin4 pin
Fan power connectors33
Added to E-Catalogapril 2017april 2017

Power phases

The number of processor power phases provided on the motherboard.

Very simplistically, phases can be described as electronic blocks of a special design, through which power is supplied to the processor. The task of such blocks is to optimize this power, in particular, to minimize power surges when the load on the processor changes. In general, the more phases, the lower the load on each of them, the more stable the power supply and the more durable the electronics of the board. And the more powerful the CPU and the more cores it has, the more phases it needs; this number increases even more if the processor is planned to be overclocked. For example, for a conventional quad-core chip, only four phases are often enough, and for an overclocked one, at least eight may be needed. It is because of this that powerful processors can have problems when used on inexpensive low-phase motherboards.

Detailed recommendations on choosing the number of phases for specific CPU series and models can be found in special sources (including the documentation for CPU itself). Here we note that with numerous phases on the motherboard (more than 8), some of them can be virtual. To do this, real electronic blocks are supplemented with doublers or even triplers, which, formally, increases the number of phases: for example, 12 claimed phases can represent 6 physical blocks with doublers. However, virtual phases are much inferior to real ones in terms of capabilities — in fact, t...hey are just additions that slightly improve the characteristics of real phases. So, let's say, in our example, it is more correct to speak not about twelve, but only about six (though improved) phases. These nuances must be specified when choosing a motherboard.

D-Sub output (VGA)

The motherboard has its own D-Sub (VGA) output.

Such an output is intended for transmitting video from an integrated graphics card (see above) or a processor with integrated graphics (we emphasize that it is impossible to output a signal from a discrete graphics card through the motherboard chipset). As for VGA specifically, it is an analogue standard originally created for CRT monitors. It does not differ in image quality, is practically not suitable for resolutions above 1280x1024 and does not provide sound transmission, and therefore is generally considered obsolete. However, this type of input continues to be used in some monitors, TVs, projectors, etc.; so among motherboards you can find models with such outputs.

HDMI output

The motherboard has its own HDMI output.

Such an output is intended for transmitting video from an integrated graphics card (see above) or a processor with integrated graphics (we emphasize that it is impossible to output a signal from a discrete graphics card through the motherboard chipset). As for HDMI specifically, it is a combined digital video/audio interface specifically designed to work with HD resolutions and multi-channel audio. Today it is the most common of these interfaces, HDMI support is almost mandatory for video devices that are compatible with HD standards.

The specific capabilities of HDMI vary by version (see below for more details), but in general they are quite impressive — even in the earliest (current today) HDMI v.1.4, the maximum resolution is 4K, and in newer standards it reaches 10K. So in motherboards, the quality of the video transmitted through such an output is often limited not by the interface capabilities, but by the graphics performance of the system.
ASRock A320M-HDV often compared
ASRock A320M-DGS often compared