Screen resolution
Resolution of built-in displays in glasses equipped with such equipment — that is, models for PC / consoles, as well as standalone devices (see "Intended use").
The higher the resolution, the more smooth and detailed the “picture” is given out by glasses, all other things being equal. Thanks to the development of technology nowadays, models with Full HD (1920x1080) screens and even higher resolutions are not uncommon. On the other hand, this parameter significantly affects the cost of points. In addition, it is worth remembering that in order to fully work with high-resolution displays, you need powerful graphics capable of playing relevant content. In the case of glasses for PCs and set-top boxes, this puts forward corresponding requirements for external devices, and in standalone models you have to use advanced integrated video adapters (which affects the cost even more).
Field of view
The viewing angle provided by virtual reality glasses is the angular size of the space that falls into the user's field of view. Usually, the characteristics indicate the size of this space horizontally; however, if you need the most accurate information, this point needs to be specified separately.
The wider the viewing angle — the more the game space the user can see without turning his head, the more powerful the immersion effect and the less likely that the image will be subject to the "tunnel vision" effect. On the other hand, making the field of view too wide also does not make sense, given the characteristics of the human eye. In general, a
large viewing angle is considered to be an angle of 100° or more. On the other hand, there are models where this indicator is 30° or even less — these are, usually, specific devices (for example, drone piloting glasses and augmented reality glasses), where such characteristics are quite justified given the overall functionality.
RAM
The amount of random access memory (RAM) installed in glasses.
This parameter is relevant only for independent devices (see "Intended use"). Theoretically, the more RAM in the gadget, the higher its power, the faster it is able to work and the better it handles with “heavy” tasks. However, in fact, this characteristic has more reference than practical value. Firstly, the capabilities of standalone glasses are also highly dependent on the processor and video adapter used. Secondly, the amount of memory is selected in such a way that the glasses are guaranteed to be able to cope with the tasks for which they were originally intended. Actually, problems can only arise with the launch of very demanding applications or resource-intensive video (for example, 4K panoramic videos); so paying attention to the amount of RAM makes sense only if you plan to use glasses for such purposes.
As for specific volumes, they in modern devices range from 2 to 4 GB.
CPU
The model of the processor installed in the glasses.
This information is indicated mainly for stand-alone devices (see "Intended use") — it is in them that the capabilities of the glasses as a whole directly depend on the processor model. And knowing the name of the chip, you can find detailed data on it and evaluate its effectiveness. At the same time, in fact, such a need arises extremely rarely: manufacturers choose processors in such a way that glasses can be used for their main purpose without any problems. So when choosing, you should pay attention to more practical parameters — display resolution, refresh rate, etc.
Refresh rate
The refresh rate supported by the glasses' built-in screens, in simple terms, is the maximum frame rate that the screens are capable of delivering.
Recall that screens are provided in models for PC / consoles and in stand-alone devices (see "Intended use"). And the quality of the picture directly depends on this indicator: other things being equal, a
higher frame rate provides a smoother image, without jerks and with good detail in dynamic scenes. The flip side of these benefits is an increase in price.
It is also worth considering that in some cases the actual frame rate will not be limited by the capabilities of the glasses, but by the characteristics of the external device or the properties of the content being played. For example, a relatively weak PC graphics card may not be able to pull out a high frame rate signal, or a certain frame rate may be set in the game and not provide boosting. Therefore, you should not chase after large values and
points with a frequency of 90 fps will be enough.
Pupillary distance adjustment
The ability
to adjust the interpupillary distance of glasses — that is, the distance between the centers of two lenses. To do this, the lenses are mounted on movable mounts that allow them to be moved to the right / left. The meaning of this feature is that for normal viewing, the centers of the lenses must be opposite the user's pupils — and for different people, the distance between the pupils is also different. Accordingly, this setting will be useful anyway, but it is especially important for users of a large or petite physique, whose interpupillary distance is noticeably different from the average.
At the same time, there is a fairly significant number of glasses that do not have this function. They can be divided into three categories. The first is devices where the lack of adjustment for the interpupillary distance is compensated in one way or another (for example, by a special form of lenses that does not require adjustment). The second is models where this adjustment is not needed in principle (in particular, some augmented reality glasses). And the third — the simplest and cheapest solutions, where additional adjustments were abandoned to reduce the cost.
USB C
The presence in the glasses of the connector type
USB-C. This is a relatively new type of USB port, which has a miniature size (slightly larger than microUSB) and a convenient double-sided design that allows you to connect the plug in either direction. It can be found in glasses for various purposes and, accordingly, provide different ways of application. So, in models for PC / consoles, this connector is used similarly to traditional USB — with the main connection, in parallel with the HDMI or DisplayPort video interface. In standalone devices, on the other hand, USB-C is mainly used to charge the battery and connect to a computer for direct file exchange, settings management, firmware updates, etc.
Also note that this paragraph may specify the USB version, which corresponds to the USB-C connector. Nowadays, two versions are relevant — 3.2 gen 1 and 3.2 gen 2; for VR glasses, the difference between them is generally not fundamental.
Wi-Fi
The Wi-Fi version supported by the glasses.
Wi-Fi technology is known mainly as the most popular way to connect to the Internet wirelessly, although it can also be used for direct connection between different devices (Wi-Fi Direct). Anyway, this function is found exclusively in stand-alone devices (see "Intended Use"). It is mainly used to connect to the World Wide Web, but the possibilities of such a connection may be different. So, in some models, a Wi-Fi connection is used to access proprietary application repositories, cloud services for storing game data, etc. Others may provide support for third-party services such as social networks or instant messengers, or even a full-fledged browser for web surfing. Technically, nothing prevents the use of Wi-Fi Direct in VR glasses, but for a number of reasons, this format of work is almost never found.
As for the versions, in modern virtual reality glasses there are mainly Wi-Fi 4 (802.11 n) and Wi-Fi 5 (802.11 ac). The difference between them in most cases is not fundamental, especially since, for compatibility, Wi-Fi modules often provide support for not only one of these standards, but also earlier ones. And the new Wi-Fi 6 at the beginning of 2021 has not yet gained much popularity. But everything has its time.
Control
The type of control provided in the design of the glasses.
Note that in this case we are talking exclusively about our own controls installed directly on the body of the glasses; many models are equipped with external controllers (see "Remote control"), but they are not taken into account in this case.
- Button. Control with classic buttons. The main advantage of this option is simplicity and low cost, while its functionality is quite enough to work with basic functions like menu navigation. On the other hand, the buttons require some effort when pressed, which can be somewhat inconvenient, especially when using the controls intensively. However, most often this disadvantage is still not fundamental.
- Touch. Control using sensors that are sensitive to touch and do not require pressing (unlike buttons). In the simplest models, these are separate sensors, the functions of which are similar to the same buttons. In more advanced devices, entire touch panels can be provided, for example, allowing you to control the cursor visible through the glasses and use special gestures. Anyway, this type of control is more advanced than push-button, however, it is more expensive, and therefore less common.