Recommended pool volume, up to
This parameter is used in pool heat pump models (see “Suitable for”). It expresses the recommended maximum volume of the pool in cubic meters, which will ensure the proper performance of the device. Note that the recommended volume is usually indicated approximately, because it is important to take into account other factors: the presence of a protective coating from the sun, ambient temperature, etc.
Operating mode
—
Heating and cooling. Heat pumps that work on pumping heat in two directions. The main heating function is usually used for the water circuit of floor heating or radiator heating, and for cooling, such devices can replace fan coil units. It is worth noting that models with this mode can be used, for example, only for heating. For example, if the cooling system already exists, which will simplify the installation of communications in general.
—
Heating only. There are heat pumps that operate only in heating mode, which is important if the room already has an air conditioning system and cooling is not required.
Max. heat output
The maximum heat output generated by a heat pump is the amount of heat it can transfer from the outdoors into the heating system and/or domestic hot water.
The heat output is the most important spec of a heat pump. It directly determines its efficiency and ability to provide the required amount of heat. Note that this spec is shown for optimal operating conditions. Such conditions are rare, so the actual output heat is usually noticeably lower than the maximum; this must be taken into account when choosing. There are special formulas for calculating the optimal value of the maximum heat output, depending on the specific condition.
Power consumption (heating)
Electric power consumed by the heat pump when operating only for heat transfer, without the use of an additional heating element (if any, see below). The ratio of thermal power to power input determines the thermal coefficient COP (see below) and, accordingly, the overall efficiency of the unit. It also affects overall power consumption (and therefore electricity bills), as well as some power and connection requirements — for example, models powered by 230 V and with a power of more than 5 kW cannot work from an outlet and require a special connection to the mains.
Max. water temperature
The highest temperature to which the pump can heat the coolant. It is worth noting that such indicators can be achieved at a fairly high temperature of air or ground. And since heat pumps are used during the cold season, the actual maximum temperature, usually, is less than theoretically achievable. Nevertheless, this parameter makes it possible to evaluate the capabilities of the unit or its suitability for certain tasks.
Compressor
The compressor is the main element, the "heart" of the unit: it circulates the coolant through the heat pump circuits and transfers heat from outdoors to the room. Knowing the name of the compressor, you can find detailed information about it and find out some features of the heat pump as a whole. Note that the name is usually indicated if the device uses a high-end compressor, often an inverter one.
— Inverter. The presence of a compressor with inverter power control in the heat pump. Models without an inverter have only two modes of operation — either on or off; and the set intensity of heating/cooling is provided by turning the compressor on and off for certain periods. In turn, the principle of inverter control is to smoothly change the compressor power, which avoids constant switching on and off. It provides many advantages: minimal wear, no power surges and unnecessary load on the electrical mains, as well as a comfortable (low and stable) noise level.
COP
The COP (coefficient of performance) is a key characteristic that describes the overall efficiency of a heat pump. It represents the ratio between the thermal power and power consumption of the unit (see above) – in other words, how many kilowatts of thermal energy the pump produces per 1 kW of electricity consumed. In modern heat pumps, this figure can exceed 5.
However, note that the actual COP value may vary depending on the outside temperature and the supply temperature. The higher the difference between these temperatures, the more resources are needed to “pump” thermal energy and the lower the COP will be. Therefore, in the specifications it is customary to indicate the COP value for specific temperatures (and in many models – two values, for different options) – this allows you to evaluate the actual capabilities of the unit.
COP
Additional heat coefficient COP specified in the specifications in addition to the main one. For more information about the meaning of this indicator, see the "COP" above. And an additional coefficient is indicated for operating temperatures other than the main one — this allows you to evaluate the capabilities of the pump in different conditions.
Noise level
The average noise level produced by the heat pump during normal operation.
The lower the noise level, the more comfortable the use of the unit will be; this is especially important when installed inside residential buildings or apartments. The noise level is a non-linear value, so it is easiest to evaluate using comparative tables. They can be found in special sources. Here we note that the quietest modern models give out a volume of about 39 – 40 dB — this is the volume of ordinary human speech and the maximum level allowed for living rooms in the daytime; the loudest ones are noisy at 60 – 62 dB — this can be compared with a TV at an average volume.