USA
Catalog   /   Sound & Hi-Fi   /   Musical Instruments   /   Pianos & Keyboards   /   Synthesizers

Comparison Korg i3 vs Korg X50

Add to comparison
Korg i3
Korg X50
Korg i3Korg X50
Compare prices 16Outdated Product
TOP sellers
Typesynthesizer (rompler)synthesizer (rompler)
Keys
Number of keys6161
Sizefull sizefull size
Mechanicsactiveactive
Sensitivity adjustment
Rigidityweightedsemi-weighted
Specs
Polyphony64 voices62 voices
Built-in timbres790 шт512 шт
Auto accompaniment
Accompaniment styles270 шт
Metronome
Sequencer (recording)
Built-in compositions
Effects and control
Timbres layering
Keyboard split
Octave shift
Reverberation
Chorus
Transposition
Pitch controller
Modulation controller
Vocoder
Connectors
Inputs
mini-Jack (3.5 mm)
USB to device (type A)
 
Connectable pedals1 шт1 шт
Outputs
USB to host (type B)
headphones
USB to host (type B)
headphones
Linear outputs24
In box
In box
PSU
PSU
General
Displaymonochromemonochrome
Power consumption6 W
Autonomous power supplyaA batteries
Dimensions (WxHxD)1037x80x296 mm975x80x257 mm
Weight4 kg4.3 kg
Color
Added to E-Catalogjune 2020april 2019
Price comparison
Glossary

Sensitivity adjustment

Ability to change the sensitivity of active mechanics (see above) in the synthesizer.

This function allows you to adjust the intensity of the key's response to pressing. Simply put, the higher the sensitivity, the louder and sharper the sound will be, with the same pressing force. This allows you to change the characteristics of the instrument's sound.

Also in synthesizers with this function, it is often possible to completely turn off the active mechanics and play on a “passive” keyboard. This can be useful for making certain voices, such as harpsichord or organ, sound realistic.

Rigidity

Unweighted. Keys with a very low pressing force, literally "failing" under the fingers. This option is well suited for inexpensive synthesizers with passive mechanics (see above), but is rarely used in active models — a small resistance force makes it difficult to choose the optimal pressing force.

— Semi- weighted. Medium-strength keys, not up to the hardness of a full-fledged piano, but showing noticeably more resistance than unweighted ones. This variant is most popular among instruments with active mechanics (see above) — the force on the keys provides adequate feedback and at the same time playing such an instrument does not cause any special difficulties even for those who previously dealt only with unweighted keyboards.

Weighted. Keys with high actuation force, comparable to that of a classical piano. Used only in professional hammer action instruments (see above) — high rigidity is a must for such mechanics (more precisely, for the response that it must provide).

Polyphony

The polyphony supported by a synthesizer, in other words, is the number of “voices” (tone generators) that can simultaneously sound on it.

This parameter is often described as the number of notes that can be played simultaneously on the keyboard. However, this is not entirely true due to the fact that in many timbres one note can activate several tone generators. As a result, for example, to play a chord of 3 notes in a timbre with 4 tone generators per note, polyphony of at least 3 * 4=12 voices is required. In addition, Auto Accompaniment and Preset Songs (see related sections) also use tone generators, requiring even more voices to work effectively with these features.

The minimum value for a more or less functional modern synthesizer is polyphony for 32 voices — and even then such an instrument can be used mainly for initial training and simple melodies. For a more solid application, it is desirable to have at least 50 – 60 voices, and in professional models (in particular, workstations where you have to deal with several audio tracks at once), there are models with polyphony for 150 tone generators or more.

In general, a more advanced synthesizer is likely to have more extensive polyphony, however, it is only possible to evaluate the class of an instrument by this parameter very approximately — instruments with the same number of voices can differ greatly in level. The only exception to this rule are children's synthesizers (see "T...ype"), which support up to 20 voices.

Built-in timbres

The number of built-in sounds provided in the synthesizer.

The number of timbres is often described as the number of instruments that a given model can imitate. However, this is not entirely true — rather, this parameter can be called "the number of instruments and sound effects." For example, the same instrument — an electric guitar — with different "gadgets" (distortion, overdrive) will sound differently, and in the synthesizer each such gadget will be considered a separate timbre. The “drums” timbre usually combines different types of drums and other percussion instruments — in other words, it allows you to portray both the “bass drum” and the cymbals without switching settings, just by pressing the desired keys. And some timbres may not have analogues among real instruments at all.

The more built-in timbres, the more extensive the possibilities of the synthesizer, the more diverse the sounds that can be extracted from it. At the same time, in high-end models like workstations (see "Type"), this number can reach 1000 or even more.

Auto accompaniment

The presence of the auto accompaniment function in the synthesizer.

This function allows the instrument to automatically play an accompaniment melody that you can play along with the main part on the keyboard. At the same time, the left hand of the musician can control the accompaniment: it is enough to take a chord on the left half of the keyboard, and the auto accompaniment will automatically “decompose” it into instrument parts that sound in accompaniment. Thus, the musician turns into a "man-orchestra": one synthesizer can replace the whole ensemble, or at least a solid part of the ensemble. Of course, the sound quality in such models can be different, and not every synthesizer with accompaniment is suitable for an event more serious than a children's party, although there are quite advanced models.

In addition, playing to accompaniment can also be useful for educational purposes: it contributes to the development of general technique, a sense of rhythm, and additional accompaniment is very convenient during improvisation exercises.

It should be taken into account that not only the sound quality, but also the number of accompaniment styles (melodies) can be different; and some models allow you to record your own melodies. See below for more details on these features.

Accompaniment styles

The number of auto accompaniment styles (see above) originally provided in the synthesizer, in other words, the number of accompaniment options available to the user.

The more extensive this set, the higher the probability of finding among these melodies suitable options for a particular case. At the same time, the abundance of styles in itself is not yet a 100% guarantee that among them there will be a suitable one, especially since different synthesizer models can differ markedly in a specific set of melodies. So the list does not hurt to clarify before buying. Also note that the situation can be corrected by user styles (see below) — many synthesizers with auto accompaniment support them.

Octave shift

Synthesizer support for octave shift function.

This function allows you to shift the sound of the instrument one or more octaves up or down — for example, so that the keys of the first octave sound the notes of the second, or vice versa. This function can be used for both simple convenience and more practical purposes — it allows you to play very low and very high notes that are not initially covered by the keyboard range. This is especially useful for shortened 49- or 61-key synths that do not initially fit the full range of the piano.

Modulation controller

The presence of a modulation controller in the design of the synthesizer.

This function allows you to give the sound the effect of vibration, "trembling" — when the note does not sound at a constant volume, but unevenly, with alternating peaks and dips in volume. This effect makes the sound more alive, gives it a resemblance to the performance on a real instrument, and is also often used as an artistic device.

Vocoder

In a very simplified way, a vocoder can be described as a device that allows you to combine the sound of a voice with the sound of another instrument. In more detail, the vocoder allows you to transfer the properties of the voice to the signal of another timbre; in this case, the voice plays the role of a modulator, and the other timbre plays the role of a carrier. Due to this, various interesting effects can be achieved: give a live voice the intonation of a “robot”, create the effect of a “speaking” instrument (guitar, piano, etc.), supplement the performer’s own voice with a synthesized “choir”, etc. Technically, even another instrument can be used instead of a voice as a modulating signal — for example, you can combine drums with a guitar or a piano with a trumpet. However, in fact, it is the voice coming from an external microphone that is most often used as a modulator (although it would not hurt to clarify the specific functionality of this module separately).
Korg i3 often compared