USA
Catalog   /   Home & Renovation   /   Autonomous Power Supply   /   Inverters & Controllers

Comparison LuxPower SNA 6000 WPV vs Axioma ISMPPT BFP DOU 6000

Add to comparison
LuxPower SNA 6000 WPV
Axioma ISMPPT BFP DOU 6000
LuxPower SNA 6000 WPVAxioma ISMPPT BFP DOU 6000
Outdated ProductOutdated Product
TOP sellers
Device typehybrid inverterhybrid inverter
Network type1 phase (230 V)1 phase (230 V)
Maximum efficiency93 %93 %
AC input / output
Rated power6000 VA6000 VA
Rated power6000 W6000 W
Peak power12000 W12000 W
Rated AC current26.5 A
Output waveformpure sinepure sine
Batteries and DC charging
Connection voltage48 В48 В
Number of battery inputs1 шт1 шт
Maximum charge current140 А120 А
Solar PV panels
Max. power8 kW6 kW
Operating voltage PV120 – 385 В120 – 500 В
Short circuit current50 А
Controller2xMMPT
Features and control
Functions
UPS function
generator connection
parallel connection
built-in monitoring
UPS function
parallel connection
built-in monitoring
Control interfaces
LAN (RJ45)
RS485
Wi-Fi
USB
RS232
RS485
Protection
reverse polarity protection
short circuit protection
overload protection
short circuit protection
overload protection
General
Displaycolourcolour
Coolingactive (fans)active (fans)
Noise level50 dB
Casing protection classIP20
Operating temperature0 °C ~ +50 °C-10 °C ~ +50 °C
Dimensions505x303x135 mm468x295x142 mm
Weight14.5 kg12 kg
Added to E-Catalognovember 2023november 2023
Glossary

Rated AC current

The current strength that the device is capable of stably and safely delivering when operating in rated mode (i.e. for the longest possible time without the risk of overloads and failures). The indicator is expressed in Amperes (A).

Maximum charge current

The maximum amount of direct current in amperes that the inverter can convert. If the solar panel produces a current exceeding this value, the inverter simply does not use it. This is often justified when connecting an inverter to high-power solar panels - the maximum input current of the inverter is reduced to acceptable values so that moderate-sized wires can be used to transmit energy.

Max. power

The maximum allowable input power from solar panels, expressed in kilowatts (kW). Let us remember that 1 kW contains 1000 W.

When selecting an inverter based on this indicator, they are based on the total power of the solar panels involved in generating electricity. Moreover, it often makes sense to select models with an inverter input power slightly less than the maximum power of solar panels - for example, if they are shaded part of the time or for other reasons do not receive enough sunlight during the day. The power of the solar battery should not exceed the power of the inverter by more than 30%. However, for some inverters the excess can be only 10%, while for others it can be up to 100%. It is better to clarify this point in advance.

Operating voltage PV

The operating range of the inverter is usually located between the starting voltage and the maximum voltage. This interval is indicated in volts.

Short circuit current

The maximum solar panel short circuit current that the inverter can accept without the risk of breakdown or emergency shutdown. The parameter is usually indicated in amperes.

Controller

Built-in Maximum Power Point Tracking (MPPT) system for monitoring the maximum power points of photovoltaic modules in solar panels. It determines the most optimal ratio of voltage and current drawn from the solar panels, thereby ensuring maximum performance of individual strings (chains of series-connected panels). An MPPT controller is useful under any external weather changes, allowing solar panels to generate power even in cloudy conditions. Modern inverter models can contain either one or several MPPT trackers (up to six), which allow for the connection of multiple arrays with different orientations and angles of inclination, thereby eliminating the mutual influence of one array on another. Each MPPT controller output is designed to connect one string.

Functions

UPS function. Inverters with a UPS function automatically switch to battery-powered mode when there is insufficient power generation from solar panels or in cases where the main power source is disconnected. This ensures load redundancy. Note that switching may not occur instantly, but with a certain delay (about 10-30 ms).

Connecting the generator. Inverters that support the generator connection function significantly increase the reliability and efficiency of autonomous solar energy systems. In practice, the function can be implemented in several basic ways. First, the system can automatically turn the generator on and off depending on the battery charge level or current power consumption, ensuring efficient use of resources and minimizing fuel consumption. Secondly, switching the load to the generator can be carried out when there is a shortage of electricity generation from solar panels. And thirdly, the generator can be used to maintain an optimal battery charge level so that the system is in full readiness at any time.

Parallel connection. The inverter has special connectors through which two or more devices can be connected to a single electrical network. Parallel connection is used when one inverter is not able to pull the entire load from solar panels and the input power exceeds the capabilities of the device itself.

Built-in monitoring. The presence of a built-in monitoring module on board the inverter, which collects information about the productivity of solar panels, allows you to monitor energy production and consumption, as well as monitor the performance of the system as a whole. Moreover, these parameters can often be viewed and controlled in real time (including through a mobile application for a smartphone). The monitoring module is usually connected to the Internet via a Wi-Fi network.

Control interfaces

Connection interfaces provided in the inverter design for solar panels.

- RS232. A specialized communication interface used to directly connect the inverter to a computer. As a rule, the interface provides the ability to monitor solar generation systems around the clock using a local network. Also, the RS232 connector can be used to communicate several inverters with each other, or, less often, for software updates or service testing.

- RS485. A connector often used to connect several inverters to a central hub, which, in turn, connects to a computer. This connection can be useful for setting up a solar generation system or sending monitoring data over the network.

- USB. A standard USB port is often used for configuring equipment via a wired connection to a computer or for inverter firmware updates.

- LAN (RJ45). The presence of a LAN connector (RJ45) in the inverter design. Such ports are standardly used for wired connections in computer networks using a twisted pair cable.

- Wi-Fi. Wi-Fi communication module for wireless connection of the inverter to a computer, laptop or mobile phone. Using specialized software, you can receive monitoring data from the inverter directly “over the air” - transmitting information over a Wi-Fi network eliminates the...fuss with wires.

Bluetooth. Option to wirelessly pair the inverter with smartphones, tablets or laptops via Bluetooth. Thanks to data synchronization, the user will be able to monitor equipment performance and remotely control the inverter within range of the Bluetooth wireless network.

Protection

Overload protection. A protection system against connecting an off-design load whose power consumption exceeds the capabilities of the inverter for solar panels. In such situations, the power to the outlets is automatically turned off, since overloading the device promises failure and even fire. Triggering of the protection is usually accompanied by a sound and/or light signal.

Overheat protection. This protection is triggered when the temperature inside the inverter rises critically. When such situations occur, the device turns off, which avoids breakdowns. In the future, some models will automatically turn on when the temperature normalizes, while others must be turned on manually. Note that overheating is caused not only by malfunctions, but also by completely normal reasons - for example, long-term operation at high air temperatures. Typically, overheating protection is accompanied by a sound and/or light signal.

Protection against ↑ or ↓ battery voltage. A protection system that prevents the inverter from being supplied with excessively high or excessively low voltage from the batteries. When the operating voltage range is exceeded, the device automatically turns off to avoid breakdowns and other troubles. A sound and/or light signal can warn of protection activation.

Short circuit protection. Protec...tion that is triggered when the output current increases critically (for example, due to a foreign metal object getting between live parts of the load). To avoid breakdowns and failure, the power at the inverter output is automatically turned off. Triggering of the protection system is usually accompanied by a sound and/or light signal.

Reverse polarity protection. Protection system in case of incorrect polarity of connection. If the “plus” and “minus” do not match, the inverter is disconnected from the power supply in order to avoid damage to the electronic components. Notification of protection activation is often provided by a sound and/or light signal.

— Protection class. The class of protection against dust and moisture provided by the inverter housing for solar panels. Indicated according to the IP standard by two numbers: the first (from 1 to 6) means resistance to penetration of foreign objects and dust, the second (from 1 to 8) - protection from moisture. The higher the number, the higher the level of protection provided. Also note that instead of the first digit in the designation of the protection class, “X” may be indicated - for example, IPX7. In this case, the device is not certified for dust protection, although in fact the level of such protection may be quite high. So, in the example with moisture resistance “7”, the case can be completely immersed in water - which means it is closed very tightly from dust.

The IP protection level is especially important to consider when choosing models for outdoor use and installation in rooms with high humidity levels - they are the ones most susceptible to adverse environmental influences. A high IP class will guarantee stable operation of the inverter for solar panels in such difficult conditions.
LuxPower SNA 6000 WPV often compared
Axioma ISMPPT BFP DOU 6000 often compared