Fast Ethernet
The number of standard RJ-45 network connectors in the Fast Ethernet format provided in the design of the switch.
Fast Ethernet is the most modest of the wired connection formats over a twisted-pair network cable nowadays — it provides data transfer rates up to 100 Mbps. However, even this speed is often enough for relatively simple tasks that are not associated with large amounts of data. Therefore, this interface is still widely used in modern switches.
As for the number of connectors, it corresponds to the number of network devices that can be connected to the "switch" directly, without the use of additional equipment. In the case of Fast Ethernet, the number of connectors
up to 10 inclusive is considered relatively small,
from 10 to 25 — average, and the presence
of more than 25 ports of this type is typical for professional-level models.
Gigabit Ethernet
The number of standard Gigabit Ethernet RJ-45 network connectors provided in the design of the switch.
As the name suggests, these connectors provide data transfer rates up to 1 Gbps. Initially, Gigabit Ethernet was considered a professional standard, and even now the real needs for such speeds arise mainly when performing special tasks. Nevertheless, even relatively inexpensive computers are now equipped with gigabit network adapters, not to mention more advanced technology.
As for the number of connectors, it corresponds to the number of network devices that can be connected to the "switch" directly, without the use of additional equipment. In the case of Gigabit Ethernet, the number of connectors up to 10 inclusive is considered relatively small, from 10 to 25 — average, and the presence of more than 25 ports of this type is typical for professional-level models. At the same time, it is worth noting that in some "switches" individual connectors of this type are combined with optical SFP or SFP + (see below). Such connectors are marked "combo" and are taken into account both in the RJ-45 count and in the SFP/SFP+ count.
Console port
The switch has a
console port. This connector is used to control the device settings from a separate computer, which plays the role of a control panel — a console. The advantage of this format of operation is that access to the functions of the switch does not depend on the state of the network; in addition, special utilities can be used on the console that provide more extensive capabilities than a regular web interface or network protocols (see "Management"). Most often, the console port uses an RS-232 connector.
Control
Management methods and protocols supported by the switch.
—
SSH. Abbreviation for Secure Shell, i.e. "Safe shell". The SSH protocol provides a fairly high degree of security, because. encrypts all transmitted data, including passwords. Suitable for managing almost all major network protocols, but requires a special utility on the host computer.
—
Telnet. A network management protocol that provides configuration using a text-based command line. It does not use encryption and does not protect transmitted data, and is also devoid of a graphical interface, which is why in many areas it has been supplanted by more secure (SSH) or more convenient (web interface) options. However, it is still used in modern network equipment.
—
Web interface. This function allows you to open the management interface of the switch in a common Internet browser. The main convenience of the web interface is that it does not require additional software — a browser is enough (and it is available in any "self-respecting" modern OS). Thus, knowing the device address, login and password, you can manage the settings from almost any computer on the network (unless, of course, otherwise specified in the access parameters).
—
SNMP. Abbreviation for Simple Network Management Protocol, i.e. "simple network control protocol". It is a stan
...dard part of the common TCP/IP protocol on which both the Internet and many local networks are built. It uses two types of software — "managers" on control computers and "agents" on managed computers (in this case, on a router). The degree of security is relatively low, but SNMP can be used for simple management tasks.
Note that this list is not exhaustive — modern switches may provide other management options, for example, support for proprietary utilities and special technologies from the same manufacturer.PoE (output)
The switch supports
the Power over Ethernet function.
This feature allows the switch to supply power to network devices over the same Ethernet cable that transmits data. This reduces the number of wires and simplifies power supply, which is especially convenient if the device is installed in a hard-to-reach place where there is no outlet nearby, and it is difficult to pull an additional cable. An example is an IP surveillance camera installed under the ceiling.
The number of PoE outputs may vary. It should also be borne in mind that when several consumers are connected at the same time, specific power restrictions apply; see "Total PoE Power" for details.
Accordingly, such devices are much more expensive than
switches without PoE.
PoE outputs
The number of PoE-enabled outputs (see above) provided in the design of the switch. This number corresponds to the maximum number of PoE network devices that can be connected to this model at the same time.
PoE output power
The PoE power (see above) provided by the switch to each individual PoE output. This indicator allows you to evaluate whether a particular device can be connected to such an output — the power consumption of the load in peak mode should not exceed the output power of the port. There are three standards EEE 802.3af (
PoE, ~15W), IEEE 802.3at (
PoE+, ~30W) and IEEE 802.3bt (
PoE++, ≥40W)
Note that when connecting several PoE devices at the same time, the total PoE power must also be taken into account — see below for more details.
Total PoE power
The total output power provided by the switch when powering devices using the PoE standard (see above).
This indicator usually corresponds to the sum of the powers of all outputs — that is, the power of one PoE port, multiplied by their total number. However, the power limits for one output and for the entire switch are somewhat different: if a load with a power equal to the output power of the power supply on this connector can be connected to a single connector, then the total power consumption of all devices connected via PoE should ideally not exceed 75% of the total power supply — this gives an additional guarantee in case of malfunctions. In fact, this means that all PoE outputs cannot be used “to the fullest” at the same time. For example, if there are two such outputs, and one is loaded at 100%, then the second can be loaded with a maximum of 50% — the total power consumption in this case will be the same 75% of the total output. Therefore,
a large total power is needed when using the device to the maximum.