USA
Catalog   /   Computing   /   Components   /   PSUs

Comparison Gigabyte Aorus Elite GP-AE850PM PG5 ICE vs Gigabyte Ultra Durable PG5 UD850GM PG5W

Add to comparison
Gigabyte Aorus Elite GP-AE850PM PG5 ICE
Gigabyte Ultra Durable PG5 UD850GM PG5W
Gigabyte Aorus Elite GP-AE850PM PG5 ICEGigabyte Ultra Durable PG5 UD850GM PG5W
Compare prices 1Compare prices 1
User reviews
0
1
0
0
TOP sellers
Power850 W850 W
Form factorATXATX
Specs
PFCactiveactive
Efficiency92 %90 %
Cooling systemsemi-passive (fan off)semi-passive (fan off)
Fan size120 mm120 mm
Fan bearinghydrodynamichydrodynamic
Certification80+ Platinum80+ Gold
ATX12V version3.13
Power connectors
MB/CPU power supply24+8+8(4+4) pin24+8+8(4+4) pin
SATA88
MOLEX43
PCI-E 8pin (6+2)64
PCI-E 16pin11
Floppy
Cable systemmodularmodular
Cable length
MB650 mm610 mm
CPU700 mm600 mm
SATA600 mm600 mm
MOLEX500 mm500 mm
PCI-E650 mm600 mm
Max. power
+3.3V25 А20 А
+5V25 А20 А
+12V170.8 А70.8 А
-12V0.3 А0.3 А
+5Vsb3 А3 А
+12V850 W850 W
+3.3V +5V125 W105 W
-12V3.6 W3.6 W
+5Vsb15 W15 W
General
Over voltage protection (OVP)
Over power protection (OPP)
Short circuit protection (SCP)
ProtectionUVP, OCP, OTPUVP, OCP, OTP
Manufacturer's warranty10 years5 years
Dimensions (HxWxD)86x150x140 mm86x150x140 mm
Added to E-Catalogoctober 2024december 2023
Glossary

Efficiency

Efficiency, in this case — the ratio of the power of the power supply (see "Power") to its power consumption. The higher the efficiency, the more efficient the power supply, the less energy it consumes from the network at the same output power, and the cheaper it is to operate. Efficiency may differ depending on the load; the characteristics can indicate both the minimum efficiency and its value at an average load (50%).

It should be noted that compliance with one or another level of 80PLUS efficiency directly depends on this indicator (for more details, see "Certificate").

Certification

The presence or absence of an 80+ certificate for the power supply. This certificate indicates high energy efficiency: to obtain it, the efficiency (see above) must be at least 80%, and in different modes (20%, 50% and 100% of the maximum load). There are several degrees of 80+:

80+. The original version of the certificate, assuming an efficiency of at least 82% (at least 85% for 50% load).

80+ White. The second name of the original 80+ certificate (see above).

80+ Bronze — efficiency not less than 85% (for half load — 88%).

80+ Silver — respectively 87% (90% for half load).

80+ Gold — 89% (92% for half load)

80+ Platinum — 90% (94% for half load).

80+ Titanium — 94% (96% for half load).

The power factor (see "PFC Type") must be at least 0.9 for the lower levels and at least 0.95 for the Platinum level. Also note that for redundant power used in server systems, the efficiency requirements are somewhat lower.

ATX12V version

A standard for power supplies that supplements the ATX specifications regarding power supply along the 12 V line. Introduced into use since the time of the Intel Pentium 4 processor. In the first series of the standard, the +5 V line was mainly used; from version 2.0, the +12 V line was introduced to fully power the components computer. Also in the second generation, a 24-pin power connector appeared, used in most modern motherboards.

MOLEX

The number of Molex (IDE) connectors provided in the design of the power supply.

Initially, such a connector was intended to power peripherals for the IDE interface, primarily hard drives. And although the IDE itself is completely obsolete today and is not used in new components, however, the Molex power connector continues to be installed in power supplies, and almost without fail. Almost any modern PSU has at least 1 – 2 of these connectors, and in high-end models this number can be 7 or more. This situation is due to the fact that Molex IDE is a fairly universal standard, and with the help of the simplest adapters, components with a different power interface can be powered from it. For example, there are Molex - SATA adapters for drives, Molex - 6 pin for video cards, etc.

PCI-E 8pin (6+2)

The number of PCI-E 8pin (6+2) power connectors provided in the PSU design.

Additional PCI-E power connectors (all formats) are used to additionally power those types of internal peripherals for which 75 W is no longer enough, supplied directly through the PCI-E socket on the motherboard (video cards are a typical example). In PC components, there are two types of such connectors — 6pin, providing up to 75 W of additional power, and 8pin, giving up to 150 W. And the 8pin (6 + 2) plugs used in power supplies are universal: they can work with both 6-pin and 8-pin connectors on the expansion board. Therefore, this type of plug is the most popular in modern PSUs.

As for the quantity, on the market you can find models for 1 PCI-E 8pin (6 + 2) connector, for 2 such connectors, for 4 connectors, and in some cases — for 6 or more. Several of these plugs can be useful, for example, when connecting several video cards — or for a powerful high-performance video adapter equipped with several PCI-E additional power connectors.

Floppy

The presence of at least one Floppy power connector in the PSU.

Initially, this connector was intended to power floppy disk drives, hence the name. It is also known under the designation "mini-Molex". Anyway, this standard is generally considered obsolete, but it is still used by some specific types of components, and therefore continues to be used in power supplies.

+3.3V

The maximum values of current and power that the PSU can provide on individual power lines.

The power line can be simply described as a pair of contacts for connecting a particular load; one of these contacts is “ground” (with zero voltage), and the second has a certain voltage with a plus or minus sign, this voltage corresponds to the voltage of the power line. In this paragraph, it is + 3.3V (such power is present in 20- and 24-pin connectors for motherboards, in SATA power connectors and some other types of connectors).

In general, power and currents are rather specific parameters that the average user rarely needs — mainly when connecting high-power components such as video cards, as well as when starting a PSU without a computer to power other electronics (for example, amateur radio stations). It is also worth mentioning that the sum of the maximum powers on all lines can be higher than the total output power of the PSU — this means that all lines cannot operate at full power at the same time. Accordingly, when the PSU is fully loaded, some of them will produce less power than the maximum possible.

+5V

The maximum current that the PSU is capable of issuing + 5V to the power line. For more information about power lines in general, see "+3.3V". Also note here that + 5V power, in addition to connectors for motherboards (for 20 and 24 pins), is also found in Molex and SATA plugs, as well as some other specific types of connectors.

+3.3V +5V

The maximum power that the PSU is capable of delivering on the + 3.3V and + 5V power lines.

See "Maximum current and power" for details on power lines in general. Here we note that the power lines + 3.3V and + 5V are used both in the general connector for the motherboard (for 20 or 24 pins), and in specialized plugs — in particular, the SATA power connector (both) and Molex (only +5V, in addition to +12V). The power of these lines is a rather specific parameter, rarely required in fact; it is usually the same for both voltages, so it is indicated in the general clause.
Gigabyte Ultra Durable PG5 often compared