CPU TDP
The amount of heat generated by the processor during normal operation. This parameter determines the requirements for the cooling system necessary for the normal operation of the processor, therefore it is sometimes called TDP - thermal design power, literally “thermal (cooling) system power”. Simply put, if the processor has a heat dissipation of 60 W, it needs a cooling system that can remove at least this amount of heat. Accordingly, the lower the TDP, the lower the requirements for the cooling system.
Passmark CPU Mark
The result shown by the laptop processor in the Passmark CPU Mark test.
Passmark CPU Mark is a comprehensive test that is more detailed and reliable than the popular 3DMark06 (see above). It checks not only the gaming capabilities of the CPU, but also its performance in other modes, based on which it displays the overall score; this score can be used to fairly reliably evaluate the processor as a whole (the more points, the higher the performance).
RAM type
Laptops mainly use different variants of DDR (so-called double data transfer memory). Here is a list of common types of such memory:
— DDR3. Third generation DDR RAM. Outperforms outdated DDR2 in terms of speed and power efficiency. However, it is also outdated against the background of the fourth version and new items - DDR5.
— DDR3L. A modification of DDR3 memory that supports operation at a reduced voltage - 1.35 V instead of 1.5 V (Low Voltage - hence the index L). Lower voltage contributes to both lower power consumption and better performance. Note that conventional DDR3 memory cannot be installed in such a slot, while the reverse option is quite possible.
—
DDR4. A memory standard released in 2014. Introduced further improvements in speed (up to 25.6 GB / s in the future) and energy efficiency. The most popular among laptops of recent years of release.
—
DDR5. The procession of the fifth generation of the DDR standard began at the turn of 2020-2021. It provides for approximately a twofold increase in memory subsystem performance and increased bandwidth compared to DDR4. Instead of a single 64-bit data channel, DDR5 uses a pair of independent 32-bit channels that work with 16-byte packets and allow 64 bytes of information to be delivered per clock on each channel. New memory modules require a voltage of 1.1 V, and the maximum volume of one DDR5 bar can rea
...ch an impressive 128 GB.
It is worth noting that different types of RAM are not interchangeable.
Some laptops have LPDDR4, LPDDR4X, LPDDR5, LPDDR5X RAM. It was developed by a specialist for mobile devices and is non-expandable, since the corresponding memory modules are built directly into the motherboard. The use of "RAM" standards LPDDR is determined by the achievement of an optimal balance between the performance of the laptop, its size and battery life.RAM speed
The clock speed of the RAM installed in the laptop.
The higher the frequency (with the same type and amount of memory) — the higher the performance of RAM in general and the faster the laptop will cope with resource-intensive tasks. However modules with the same frequency may differ somewhat in actual performance due to differences in other characteristics; but this difference becomes significant only in very specific cases, for the average user it is not critical. As for specific values, the most popular modules on the modern market are
2400 MHz,
2666 MHz,
2933 MHz and
3200 MHz. Memory at
2133 MHz or less is found mainly in outdated and low-cost devices, and in high-performance configurations this parameter is
2933 MHz,
3200 MHz,
4266 MHz,
4800 MHz,
5200 MHz,
5500 MHz,
5600 MHz,
6000 MHz,
6400 MHz and
more.
3DMark06
The result shown by the laptop's graphics card in 3DMark06.
This test primarily determines how well a graphics card handles intensive workloads, in particular, with detailed 3D graphics. The test result is indicated in points; the more points, the higher the performance of the video adapter. Good 3DMark06 scores are especially important for
gaming laptops and advanced workstations. However, it is difficult to call them reliable, since measurements are made on video cards with different TDPs and an overall average score is given. Thus, your laptop can have either more or less than the specified result - it all depends on the TDP of the installed video card.
3DMark Vantage P
The result shown by the laptop graphics card in the 3DMark Vantage P test.
Vantage P is a variant of the popular 3DMark test — namely, the next version of this test after 3DMark06 (see above). Like all such tests, it is designed to test the performance of graphics under high loads and displays the results in points; the more points, the more powerful and performant the graphics card is. Good results in 3DMark Vantage P are especially important if the laptop is going to be used for demanding games. However, it is difficult to call them reliable, since measurements are made on video cards with different TDPs and an overall average score is given. Thus, your laptop can have either more or less than the specified result - it all depends on the TDP of the installed video card.
M.2 drive interface
The connection interface used by the M.2 SSD installed in the laptop (see "Drive type").
One of the features of the M.2 connector and drives for it is that they can use two different connection interfaces: PCI-E (in one form or another) or SATA. We emphasize that this paragraph indicates the data of the SSD module; the connector itself may provide other interface options, including more advanced ones — see "M.2 connector interface" (for example, a drive with a PCI-E 3.0 2x connection can be placed in a connector that also supports the faster PCI-E 4.0 4x). However, anyway, the connection connector usually allows you to realize all the features of the installed drive; so this item allows you to quite reliably evaluate the capabilities of the standard M.2 module.
As for specific interfaces, nowadays you can mainly find the following options:
— SATA 3. The SATA interface was originally designed for traditional hard drives. The third version of this interface is the latest; it provides data transfer rates up to 600 Mbps. This is significantly less than PCI-E, and in general, very little by the standards of SSD drives. Therefore, M.2 connection using SATA is typical mainly for low-cost entry-level modules. However, even these media are generally faster than most HDDs.
— PCI-E. Universal interface for connecting internal peripherals. Provides generally faster speeds than SATA, making it better suited for SSD modules: theoretically, PC
...I-E allows you to realize the full potential of SSDs, even the fastest. In fact, the supported data transfer rate may be different — depending on the version of the interface and the number of lines (data transmission channels). Here are the options most relevant for modern laptops:
- PCI-E 3.0 2x. Connection using 2 lanes PCI-E version 3.0. This version provides speeds of about 1 GB/s per line; respectively, two lines give a maximum of just under 2 GB / s.
- PCI-E 3.0 4x. Connection using 4 lanes PCI-E version 3.0. Provides a maximum speed of about 4 GB / s.
- PCI-E 4.0 4x. Connection using 4 lanes PCI-E version 4.0. In this version, the throughput, compared to PCI-E 3.0, has been doubled — thus, 4 lines give a maximum speed of about 8 MB / s.
Note that in the case of M.2 connectors, different PCI-E variations are usually quite compatible with each other — except that the connection speed when working with a "non-native" connector will be limited by the capabilities of the slowest component. For example, when connecting a PCI-E 3.0 4x SSD module to a PCI-E 3.0 2x slot, this speed will correspond to the capabilities of the connector, and when connected to PCI-E 4.0 4x, to the capabilities of the drive.M.2 connector interface
The interface of the main M.2 connector provided in the laptop.
In this case, the main slot is considered to be the one in which the SSD M.2 drive is installed (see "Drive type"). The interface of the drive itself is indicated separately (see above), and the interface of the connector is specified if the connector supports a more advanced type of connection than the device installed in it. An example is the following situation: the device itself works according to the SATA or PCI-E 3.0 2x standard (see "M.2 drive interface" above), and the connector on the board is capable of working with the PCI-E 3.0 4x interface.
Such information will be useful, first of all, for evaluating the possibilities for upgrading a laptop (with replacing a standard SSD module with a faster one). Nowadays, in this paragraph, you can mainly find the following options:
— PCI-E 3.0 2x. In fact, the most modest PCI-E standard found in M.2 ports of modern laptops: connection using 2 lanes of PCI-E version 3.0. This version provides speeds of about 1 GB/s per line; respectively, two lines give a maximum of just under 2 GB / s.
— PCI-E 3.0 4x. Connection using 4 lanes PCI-E version 3.0. Provides a maximum speed of about 4 GB / s.
— PCI-E 4.0 4x. Connection using 4 lanes PCI-E version 4.0. In this version, the bandwidth, compared to PCI-E 3.0, has been doubled — thus, 4 lines give a maximum speed of about 8 GB / s.
— PCI-E. Connection...via PCI-E, for which the manufacturer did not specify the details (version and number of lines).
Recall that in the case of M.2 connectors, different PCI-E options are quite compatible with each other — except that the speed will be limited by the capabilities of a slower component. In fact, this means that, for example, in an M.2 connector with a PCI-E 3.0 4x interface, it is quite possible to connect a drive for PCI-E 3.0 2x or PCI-E 4.0 4x; in the first case, the speed will be limited by the capabilities of the drive, in the second, by the capabilities of the connector.
M.2 drive size
The size of the M.2 SSD module (see "Drive Type") installed in the laptop. Specified in the format "width x length".
This parameter primarily allows you to evaluate the amount of space allocated for the drive, and the possibility of replacing it with a module of a different size. It is worth noting here that the M.2 standard itself allows several options for length and width, but boards with a width of 22 mm are most widely used. The length of such a board usually corresponds to one of the standard options: 30 mm, 42 mm, 60 mm, 80 mm and 110 mm.
In general, the installation of a shorter module of the same width (for example, 22x42 mm instead of 22x60 mm) does not cause problems, but the possibility of using larger components should be clarified separately — not every case allows the installation of M.2 drives with a larger one than the standard module , length. As for specific dimensions, the most common in modern laptops is M.2 22x80 mm SSDs: this size is guaranteed to allow you to change the “native” drive to almost any 22 mm standard module (except for the largest, 22x110 mm — and even for them there can be a place ). There are also smaller sizes — 22x60 mm, 22x42 mm and even 22x30 mm — but much less frequently. And here it is worth saying that the shorter the length of the SSD module, the smaller its capacity, usually.
Note that modern laptops also use M.2 modules of a different width — usually 16 mm with a length of 20 mm (16x20 mm). H...owever, this is a very rare option.