USA
Catalog   /   Computing   /   Laptops & Accessories   /   Laptops

Comparison Acer Nitro V 15 ANV15-41 [ANV15-41-R6M2] vs Asus TUF Gaming A15 FA506NF [FA506NF-HN044]

Add to comparison
Acer Nitro V 15 ANV15-41 (ANV15-41-R6M2)
Asus TUF Gaming A15 FA506NF (FA506NF-HN044)
Acer Nitro V 15 ANV15-41 [ANV15-41-R6M2]Asus TUF Gaming A15 FA506NF [FA506NF-HN044]
Outdated ProductOutdated Product
User reviews
1
0
0
2
TOP sellers
The display supports Adaptive-Sync technology (eliminates the effect of tearing the frame and reduces display lag).
Typelaptoplaptop
Screen
Screen size15.6 "15.6 "
Screen typeIPSIPS
Surface treatmentmattematte
Screen resolution1920x1080 (16:9)1920x1080 (16:9)
Refresh rate144 Hz144 Hz
Brightness250 nt250 nt
Contrast1000 :1
Colour gamut (sRGB)63 %
Colour gamut (Adobe RGB)47 %
Colour gamut (NTSC)45 %45 %
Adaptive-Sync
CPU
SeriesRyzen 5Ryzen 5
Model7535HS7535HS
Code nameRembrandt R (Zen 3+)Rembrandt R (Zen 3+)
Processor cores66
Total threads1212
CPU speed3.3 GHz3.3 GHz
TurboBoost / TurboCore frequency4.55 GHz4.55 GHz
CPU TDP35 W35 W
3DMark0612242 score(s)12242 score(s)
Passmark CPU Mark18372 score(s)18455 score(s)
SuperPI 1M8.49 с8.49 с
RAM
RAM16 GB16 GB
Max. RAM32 GB32 GB
RAM typeDDR5DDR5
RAM speed4800 MHz5600 MHz
Slots22
Graphics card
Graphics card typededicateddedicated
Graphics card seriesNVIDIA GeForceNVIDIA GeForce
Graphics card modelRTX 2050RTX 2050
Video memory4 GB4 GB
Memory typeGDDR6GDDR6
GPU TDP75 W60 W
3DMark0639263 points39263 points
3DMark Vantage P46821 points46821 points
Storage
Drive typeSSD M.2 NVMeSSD M.2 NVMe
Drive capacity512 GB512 GB
M.2 drive interfacePCI-E 3.0PCI-E 4.0 4x
M.2 connector interfacePCI-E 4.0 4x
M.2 drive size22x80 mm22x80 mm
Additional M.2 connector11
Addittional M.2 connectors interfacePCI-E 4.0 4xPCI-E 3.0 4x
Additional M.2 drive size22x80 mm22x80 mm
Connections
Connection ports
HDMI
v 2.1
HDMI
v 2.1
Card reader
USB 3.2 gen133
USB C 3.2 gen21 pc
USB41
Alternate Mode
Monitors connection22
LAN (RJ-45)1 Gbps1 Gbps
Wi-FiWi-Fi 6 (802.11ax)Wi-Fi 6 (802.11ax)
Bluetoothv 5.1v 5.3
Multimedia
Webcam1280x720 (HD)1280x720 (HD)
Camera shutter
Speakers22
Audio decodersDTS X UltraDTS X Ultra
Security
kensington / Noble lock
kensington / Noble lock
Keyboard
BacklightwhiteRGB
Key designisland typeisland type
Num block
Input devicetouchpadtouchpad
Battery
Battery capacity57 W*h48 W*h
Operating time7.5 h
Powered by USB-C (Power Delivery)
Power Delivery65 W
Fast charge
Charging time50% in 30 min
Power supply Included135 W150 W
General
Preinstalled OSDOSno OS
MIL-STD-810 Military Standard
Materialmatte plasticaluminium / plastic
Dimensions (WxDxT)362x240x24 mm359x256x23 mm
Weight2.1 kg2.3 kg
Color
Added to E-Catalogjune 2024april 2024
Glossary

Contrast

The contrast of the screen installed in the laptop.

Contrast is the largest difference in brightness between the lightest white and darkest black that can be achieved on a single screen. It is written as a fraction, for example, 560:1; while the larger the first number, the higher the contrast, the more advanced the screen is and the better the image quality can be achieved on it. This is especially noticeable with large differences in brightness within a single frame: with low contrast, individual details located in the darkest or brightest parts of the picture may be lost, increasing the contrast allows you to eliminate this phenomenon to a certain extent. The flip side of these benefits is an increase in cost.

Separately, we emphasize that in this case only static contrast is indicated — the difference provided within one frame in normal operation, at constant brightness and without the use of special technologies. For advertising purposes, some manufacturers may also provide data on the so-called dynamic contrast — it can be measured in very impressive numbers (seven-digit or more). However, you should focus primarily on static contrast — this is the basic characteristic of any display.

As for specific values, even in the most advanced screens, this indicator does not exceed 2000: 1. But in general, modern laptops have a rather low contrast ratio — it is assumed that for tasks that require more advanced image characteristics, it is more...reasonable to use an external screen (monitor or TV).

Colour gamut (sRGB)

The colour gamut of the laptop matrix according to the Rec.709 colour model or according to sRGB.

Colour gamut describes the range of colours that can be displayed on the screen. It is indicated as a percentage, but not relative to the entire variety of visible colours, but relative to the conditional colour space (colour model). This is due to the fact that no modern screen is able to display all the colours visible to humans. However, the larger the colour gamut, the wider the screen's capabilities, the better its colour reproduction.

Specifically, sRGB and Rec.709 are the most popular of today's colour models; they have the same range and differ only in the scope (sRGB is used in computers, Rec. 709 is used in HDTV). Therefore, the closer the colour gamut is to 100%, the more accurately the colours on the screen will match the colours that were originally intended by the creator of the film, game, etc. At the same time, note that such accuracy is not particularly needed in everyday use — it critical only for professional work with colour; and even in such cases, it is more convenient to buy a separate monitor with a wide colour gamut for a laptop, rather than looking for a laptop with a high-quality (and, accordingly, expensive) matrix.

Colour gamut (Adobe RGB)

The colour gamut of the laptop matrix according to the Adobe RGB colour model.

Colour gamut describes the range of colours that can be displayed on the screen. It is indicated as a percentage, but not relative to the entire variety of visible colours, but relative to the conditional colour space (colour model). This is due to the fact that no modern screen is able to display all the colours visible to humans. However, the larger the colour gamut, the wider the screen's capabilities, the better its colour reproduction.

The Adobe RGB colour model was originally developed for print applications; the range of colours covered by it corresponds to the capabilities of professional printing equipment. Therefore, theoretically, the extensive coverage of this model will be useful to those involved in the design and layout of high-end printed products. However most laptop screens have very limited Adobe RGB values, rarely exceeding 74%; however, you can also find high-end models where this figure approaches 100%. Of course, the cost of such laptops will also be appropriate; therefore, it makes sense to pay attention to them, first of all, when the ability to work with colour “on the go” is of key importance. If this is to be done in one place, it may be more justified to buy a separate monitor with a wide colour gamut (especially since a monitor with such characteristics is easier to find than a laptop).

Adaptive-Sync

Laptop screen support for VESA Adaptive-Sync technology.

The feature aims to synchronize the refresh rate of the display with the frame rate of the GPU to reduce latency, minimize artifacts, and eliminate visual tearing in the image. Adaptive-Sync-certified screens should run at refresh rate of 120Hz by default, and the frame rate should be able to drop to 60Hz. The actual response time of such displays should be less than 5 ms.

It is important to note that VESA Adaptive-Sync technology is only available for DisplayPort 1.2a or higher.

Passmark CPU Mark

The result shown by the laptop processor in the Passmark CPU Mark test.

Passmark CPU Mark is a comprehensive test that is more detailed and reliable than the popular 3DMark06 (see above). It checks not only the gaming capabilities of the CPU, but also its performance in other modes, based on which it displays the overall score; this score can be used to fairly reliably evaluate the processor as a whole (the more points, the higher the performance).

RAM speed

The clock speed of the RAM installed in the laptop.

The higher the frequency (with the same type and amount of memory) — the higher the performance of RAM in general and the faster the laptop will cope with resource-intensive tasks. However modules with the same frequency may differ somewhat in actual performance due to differences in other characteristics; but this difference becomes significant only in very specific cases, for the average user it is not critical. As for specific values, the most popular modules on the modern market are 2400 MHz, 2666 MHz, 2933 MHz and 3200 MHz. Memory at 2133 MHz or less is found mainly in outdated and low-cost devices, and in high-performance configurations this parameter is 2933 MHz, 3200 MHz, 4266 MHz, 4800 MHz, 5200 MHz, 5500 MHz, 5600 MHz, 6000 MHz, 6400 MHz and more.

GPU TDP

The amount of heat generated by the graphics processing unit (GPU) during normal operation. TDP is expressed in watts. It allows you to evaluate the thermal characteristics of a laptop and determine its potential for working with high graphics loads. The higher the GPU TDP value, the more power the GPU consumes, which may require a more efficient cooling system to avoid overheating and ensure stable operation of the device. Laptops with higher GPU heat dissipation are better suited for gamers or graphics and video production professionals.

M.2 drive interface

The connection interface used by the M.2 SSD installed in the laptop (see "Drive type").

One of the features of the M.2 connector and drives for it is that they can use two different connection interfaces: PCI-E (in one form or another) or SATA. We emphasize that this paragraph indicates the data of the SSD module; the connector itself may provide other interface options, including more advanced ones — see "M.2 connector interface" (for example, a drive with a PCI-E 3.0 2x connection can be placed in a connector that also supports the faster PCI-E 4.0 4x). However, anyway, the connection connector usually allows you to realize all the features of the installed drive; so this item allows you to quite reliably evaluate the capabilities of the standard M.2 module.

As for specific interfaces, nowadays you can mainly find the following options:

— SATA 3. The SATA interface was originally designed for traditional hard drives. The third version of this interface is the latest; it provides data transfer rates up to 600 Mbps. This is significantly less than PCI-E, and in general, very little by the standards of SSD drives. Therefore, M.2 connection using SATA is typical mainly for low-cost entry-level modules. However, even these media are generally faster than most HDDs.

— PCI-E. Universal interface for connecting internal peripherals. Provides generally faster speeds than SATA, making it better suited for SSD modules: theoretically, PC...I-E allows you to realize the full potential of SSDs, even the fastest. In fact, the supported data transfer rate may be different — depending on the version of the interface and the number of lines (data transmission channels). Here are the options most relevant for modern laptops:
  • PCI-E 3.0 2x. Connection using 2 lanes PCI-E version 3.0. This version provides speeds of about 1 GB/s per line; respectively, two lines give a maximum of just under 2 GB / s.
  • PCI-E 3.0 4x. Connection using 4 lanes PCI-E version 3.0. Provides a maximum speed of about 4 GB / s.
  • PCI-E 4.0 4x. Connection using 4 lanes PCI-E version 4.0. In this version, the throughput, compared to PCI-E 3.0, has been doubled — thus, 4 lines give a maximum speed of about 8 MB / s.
Note that in the case of M.2 connectors, different PCI-E variations are usually quite compatible with each other — except that the connection speed when working with a "non-native" connector will be limited by the capabilities of the slowest component. For example, when connecting a PCI-E 3.0 4x SSD module to a PCI-E 3.0 2x slot, this speed will correspond to the capabilities of the connector, and when connected to PCI-E 4.0 4x, to the capabilities of the drive.

M.2 connector interface

The interface of the main M.2 connector provided in the laptop.

In this case, the main slot is considered to be the one in which the SSD M.2 drive is installed (see "Drive type"). The interface of the drive itself is indicated separately (see above), and the interface of the connector is specified if the connector supports a more advanced type of connection than the device installed in it. An example is the following situation: the device itself works according to the SATA or PCI-E 3.0 2x standard (see "M.2 drive interface" above), and the connector on the board is capable of working with the PCI-E 3.0 4x interface.

Such information will be useful, first of all, for evaluating the possibilities for upgrading a laptop (with replacing a standard SSD module with a faster one). Nowadays, in this paragraph, you can mainly find the following options:

— PCI-E 3.0 2x. In fact, the most modest PCI-E standard found in M.2 ports of modern laptops: connection using 2 lanes of PCI-E version 3.0. This version provides speeds of about 1 GB/s per line; respectively, two lines give a maximum of just under 2 GB / s.

— PCI-E 3.0 4x. Connection using 4 lanes PCI-E version 3.0. Provides a maximum speed of about 4 GB / s.

— PCI-E 4.0 4x. Connection using 4 lanes PCI-E version 4.0. In this version, the bandwidth, compared to PCI-E 3.0, has been doubled — thus, 4 lines give a maximum speed of about 8 GB / s.

— PCI-E. Connection...via PCI-E, for which the manufacturer did not specify the details (version and number of lines).

Recall that in the case of M.2 connectors, different PCI-E options are quite compatible with each other — except that the speed will be limited by the capabilities of a slower component. In fact, this means that, for example, in an M.2 connector with a PCI-E 3.0 4x interface, it is quite possible to connect a drive for PCI-E 3.0 2x or PCI-E 4.0 4x; in the first case, the speed will be limited by the capabilities of the drive, in the second, by the capabilities of the connector.
Acer Nitro V 15 ANV15-41 often compared