USA
Catalog   /   Climate, Heating, Water Heating   /   Heating & Boilers   /   Boilers

Comparison BAXI Duo-tec Compact 1.24 24.7 kW
230 V
vs BAXI LUNA-3 240 i 24 kW
230 V

Add to comparison
BAXI Duo-tec Compact 1.24 24.7 kW 230 V
BAXI LUNA-3 240 i 24 kW 230 V
BAXI Duo-tec Compact 1.24 24.7 kW
230 V
BAXI LUNA-3 240 i 24 kW
230 V
from $872.00
Outdated Product
from $652.56 up to $700.88
Outdated Product
TOP sellers
Stainless steel heat exchanger. Wide range of coolant temperature adjustment. Outside temperature sensor. Support for "warm floor" mode.
In the models produced earlier, the control panel is slightly different, check this point with the sellers.
Energy sourcegasgas
Installationwallwall
Typesingle-circuit (heating only)dual-circuit (heating and DHW)
Heating area180 m²180 m²
Condensing
Technical specs
Heat output24.7 kW24 kW
Min. heat output3.5 kW9.3 kW
Power supply230 В230 В
Power consumption102 W80 W
Coolant min. T25 °С30 °С
Coolant max. T80 °С85 °С
Heating circuit max. pressure3 bar
Consumer specs
DHW min. T35 °С
DHW max. T65 °С
Performance (ΔT=25°C)13.7 L/min
Performance (ΔT ~30 °C)9.8 L/min
Outdoor temperature sensor
"Summer" mode
Heated floor mode
Circulation pump
Boiler specs
Efficiency105.7 %91.2 %
Combustion chamberclosed (turbocharged)open (atmospheric)
Flue diameter60/100 mm120 mm
Inlet gas pressure20 mbar20 mbar
Max. gas consumption2.61 m³/h2.78 m³/h
Expansion vessel capacity7 L8 L
Expansion vessel pressure0.8 bar0.8 bar
Heat exchangerstainless steelcopper
Connections
Mains water intake1/2"
DHW flow1/2"
Gas supply1/2"3/4"
Central heating flow3/4"3/4"
Central heating return3/4"3/4"
Safety
Safety systems
gas pressure drop
water overheating
flame loss
draft control
water circulation failure
frost protection
gas pressure drop
water overheating
flame loss
draft control
water circulation failure
frost protection
More specs
Dimensions (HxWxD)700x400x299 mm760x440x345 mm
Weight34 kg34.5 kg
Added to E-Catalogapril 2013july 2011
Glossary

Type

Depending on the set of functions, boilers are divided into single-circuit and dual-circuit.

- Single-circuit boilers are equipped with one heat exchanger, in which the heat from fuel combustion is transferred to the heat medium of the heating system. The only function of such boilers is space heating. It is technically possible to use single-circuit boilers to provide hot water, but this requires an additional tank (the so-called indirect water heater).

- In dual-circuit boilers, the primary heat exchanger is supplemented by a secondary one. Due to this, such a boiler, in addition to heating the room, also provides a hot water supply. In this case, both running water and water accumulated in a special tank(see Built-in water heater tank) can be used.

Condensing

Boilers generate additional heat by condensing water vapour from combustion products. In such units, the combustion gases, before entering the flue, are passed through an additional heat exchanger, in which they are cooled, and the water vapour condenses and transfers thermal energy to the coolant. It allows you to increase the efficiency by 10 – 15% compared to boilers of the classical design — up to the fact that in many similar models, the efficiency exceeds 100% (for more details, see "Efficiency").

The condensation principle of operation is most often found in gas models (see "Power source"); however, solid and liquid fuel boilers with this feature are also produced.

Heat output

It is the maximum useful power of the boiler.

The ability of the device to heat a room of a particular area directly depends on this parameter; by power, you can approximately determine the heating area, if this parameter is not indicated in the specs. The most general rule says that for a dwelling with a ceiling height of 2.5 – 3 m, at least 100 W of heat power is needed to heat 1 m2 of area. There are also more detailed calculation methods that take into account specific factors: the climatic zone, heat gain from the outside, design features of the heating system, etc.; they are described in detail in special sources. Also note that in dual-circuit boilers (see "Type"), part of the heat generated is used to heat water for the hot water supply; this must be taken into account when evaluating the output power.

It is believed that boilers with a power of more than 30 kW must be installed in separate rooms (boiler rooms).

Min. heat output

The minimum heat output at which the heating boiler can operate in constant mode. Operation at minimum power allows you to reduce the number of on-and-off cycles that adversely affect the durability of heating boilers.

Power consumption

The maximum electrical power consumed by the boiler during operation. For non-electric models (see Energy source), this power is usually low, as it is required mainly for control circuits and it can be ignored. Regarding electric boilers, it is worth noting that the power consumption in them is most often somewhat higher than the useful one since part of the energy is inevitably dissipated and not used for heating. Accordingly, the ratio of useful and consumed power can be used to evaluate the efficiency of such a boiler.

Coolant min. T

The minimum operating temperature of the heat medium in the boiler system when operating in heating mode.

Coolant max. T

The maximum operating temperature of the heat medium in the boiler system when operating in heating mode.

Heating circuit max. pressure

The maximum pressure in the heating circuit of the boiler, at which it remains operational, and there is no risk of physical damage to the structure. For a heating system, the maximum pressure is usually about 3 bar, and for a domestic hot water circuit up to 10 bar. When the maximum pressure is exceeded, a safety valve is activated, and part of the water is discharged from the system until a normal pressure level is reached.

DHW min. T

The minimum temperature of domestic hot water (DHW) supplied by a dual-circuit boiler. For comparison, we note that water begins to be perceived as warm, starting from 40 °C, and in centralized hot water supply systems, the temperature of hot water is usually about 60 °C (and should not exceed 75 °C). At the same time, in some boilers, the minimum heating temperature can be only 10 °C or even 5 °C. A similar mode of operation is used to protect pipes from freezing during the cold season: the circulation of water with a positive temperature prevents the formation of ice inside and damage to the circuits.

It is also worth keeping in mind that when heated to a given temperature, the temperature difference ("ΔT") may be different — depending on the initial temperature of the cold water. And the performance of the boiler in the DHW mode directly depends on ΔT; see below for performance details.
BAXI Duo-tec Compact 1.24 often compared
BAXI LUNA-3 240 i often compared