USA
Catalog   /   Photo   /   Binoculars & Telescopes   /   Binoculars & Monoculars

Comparison Levenhuk Heritage BASE 8x30 vs KOMZ 8x30

Add to comparison
Levenhuk Heritage BASE 8x30
KOMZ 8x30
Levenhuk Heritage BASE 8x30KOMZ 8x30
Compare prices 1
from $38.00
Outdated Product
TOP sellers
The optics of the binoculars were made to order at the KOMZ plant (Kazan Optical and Mechanical Plant), which supplies optical instruments for the Russian army.
Product typebinocularsbinoculars
Magnification8 x8 x
Optical characteristics
Field of view 1 km away150 m150 m
Real angle of view8 °8.3 °
Min. focus distance3 m
Twilight factor15.515.5
Relative brightness14.0614.1
Diopter adjustment
Diopter correction range±2.5 D
Design
Lens diameter30 mm30 mm
Exit pupil diameter3.75 mm3.75 mm
Eye relief12 mm
Focuscentralcentral
Anti reflective coatingfull multilayer
PrismPorroPorro
Prism materialBaK-4
Interpupillary adjustment
Interpupillary distance56 – 74 mm
Range finder
General
Shockproof
Dustproof, water resistant
Case
Tripod adapter
Bodyaluminium alloy
Size120x155x60 mm
Weight1000 g620 g
Color
Added to E-Catalogaugust 2018april 2015
Glossary

Real angle of view

The section of the panorama that can be viewed through the eyepieces of binoculars. The higher the actual angular field of view, the wider the visibility of the optics. Note that the angular field of view has an inverse relationship with magnification. That is, the higher the magnification, the narrower the visibility (the smaller the real angular field of view). The actual angular field of view is calculated as follows: you need to divide the angular field of view (in degrees °) by the magnification factor. In comparison, the human eye has an angular field of view of 60 arcseconds (“). In terms of degrees, you get 150 °. Good binoculars provide a real field of view somewhere within 10 arcseconds. But it does not always make sense to chase after large indicators of the real angular field of view. The fact is that when viewing a large section of the panorama, the edges of the image receive noticeable distortion.

Min. focus distance

The smallest distance to the observed object, at which it will be clearly visible through binoculars / monoculars. All such optical instruments were initially created for observing remote objects, therefore, not all of them are able to work at short distances. When choosing a model for this parameter, one should proceed from the expected observation conditions: ideally, the minimum focus distance should not be greater than the smallest possible distance to the observed object.

Relative brightness

One of the parameters describing the quality of visibility through an optical device in low light conditions. Relative brightness is denoted as the diameter of the exit pupil (see below) squared; the higher this number, the more light the binoculars/monoculars let through. At the same time, this indicator does not take into account the quality of lenses, prisms and coatings used in the design. Therefore, comparing the two models in terms of relative brightness is only possible approximately, since even if the values are equal, the actual image quality may differ markedly.

Diopter correction range

The range of values in which diopter adjustment can be made (see above). If you wear glasses with diopters, but plan to look through binoculars / monoculars without them, you should choose a model whose range would correspond to the characteristics of the glasses (or at least be as close as possible to them).

Eye relief

The offset is the distance between the eyepiece lens and the exit pupil of an optical instrument (see "Exit Pupil Diameter"). Optimum image quality is achieved when the exit pupil is projected directly into the observer's eye; so from a practical point of view, offset is the distance from the eye to the eyepiece lens that provides the best visibility and does not darken the edges (vignetting). A large offset is especially important if the binoculars / monoculars are planned to be used simultaneously with glasses — because in such cases it is not possible to bring the eyepiece close to the eye.

Anti reflective coating

Coating is a special coating applied to the surface of the lens. This coating is intended to reduce light loss at the air-glass interface. Such losses inevitably arise due to the reflection of light, and the antireflective coating “turns” the reflected rays back, thus increasing the light transmission of the lens. In addition, this function reduces the amount of glare on objects visible through binoculars/monoculars. There are single-layer, full single-layer, multi-layer, full multi-layer. More details about them:

- Single layer. This marking indicates that one or more lens surfaces (but not all) have a single layer of anti-reflective coating applied to them. This is inexpensive and can be used even in entry-level optical instruments. On the other hand, it filters out a certain spectrum of light, which distorts the color rendition in the visible image - sometimes quite noticeably. In addition, in this case, on some lens surfaces there is no coating at all, which inevitably leads to glare in the field of view. Thus, single-layer coating is the simplest type and is used extremely rarely, mainly in budget models.

- Full single layer. A variation of the single-layer coating described above, in which an anti-reflective coating is present on all surfaces of the lenses (at each air-glass interface). Although this option is al...so characterized by color distortion, it is devoid of another, the most key drawback of “incomplete” enlightenment - glare in the field of view. And the mentioned color distortion is most often not critical. With all this, full single-layer coating is relatively inexpensive, which is why it is very popular in entry-level and entry-mid-level models.

- Multi-layered. A type of coating in which multiple layers of reflective coating are applied to one or more lens surfaces (but not all). The advantage of such a coating over a single-layer coating is that it uniformly transmits almost the entire visible spectrum and does not create noticeable color distortions. The absence of a coating on individual surfaces reduces the cost of the device (compared to full multi-layer coating), but it is impossible to completely get rid of glare in such a system.

- Fully multi-layered. The most advanced and effective of modern types of coating: a multilayer coating is applied to all surfaces of the lenses. This way, high brightness and clarity of the “picture” is achieved, with natural color rendition and no glare. The classic disadvantage of this option is its high cost; Accordingly, full multi-layer coating is typical mainly for high-end models.

Prism material

Material used for prisms found in binoculars and monoculars.

- BK-7. A type of borosilicate optical glass (6LR61), a relatively inexpensive and at the same time quite functional material that provides, although not outstanding, quite acceptable image quality. Used in entry-level and mid-level models.

—BaK-4. Barium optical glass, noticeably superior to BK7 in brightness and image clarity, is however also more expensive. Accordingly, it is found mainly in the premium segment.

Interpupillary distance

Interpupillary distance adjustment range provided in binoculars with the corresponding function.

Recall that, ideally, the interpupillary distance of the device should correspond to the distance between the centers of the pupils of the user himself. With this calculation, it is worth choosing binoculars according to this parameter; and if the device will be used by several people, it is worth making sure that they all “fit” into the adjustment range of the selected model. However, not every person knows exactly their interpupillary distance, especially since it changes with age; and the circle of users can be indefinite — for example, if we are talking about "rolling" binoculars in the hunting industry. In such cases, it is worth proceeding from the following.

In adults of more or less standard physique, the interpupillary distance is in the range from 60 to 66 mm. Modern binoculars cover this range with a margin — even the most modest models support values from 60 to 70 mm, and in most cases the lower limit of the range lies in the region of 54 – 57 mm, and the upper one — 72 – 75 mm. This is quite enough for most adults, including those with a non-standard physique — miniature, or vice versa, large. So a wider range may come in handy only in special cases. For example, if a child will use binoculars, it is desirable that the lower adjustment limit be lower than the standard 50 – 55 mm (in some models, this limit is at the level of 38 mm, or even 34 mm).

Range finder

The presence of a rangefinder in the design of binoculars / monoculars. Rangefinder, as the name implies, allows you to measure the distance to a specific object; but the specific methods of such measurement may vary. The simplest and most common variant is the reticle visible in the eyepieces; such rangefinders are inexpensive and work without batteries. On the other hand, the very procedure for using them is not very convenient, because requires knowledge of the dimensions of the object being used for measurement, as well as the ability to apply certain formulas. Active laser rangefinders are more convenient: with such a device, it is enough to point the binoculars mark at the target and press the button — the automation will do the rest. Their main disadvantage is the high price; in addition, the laser requires a power source to operate.