Brightness ANSI Lumens
This parameter largely determines the ability of the projector to work in a well-lit room. For a dark room, 1000 lumens is enough to make the projection picture bright, rich, clear and understandable. But when working in a lit room, the projector will need at least 3500-4000 lumens. Do not confuse ANSI lumens with Peak lumens. These are two different brightness standards. To convert one type of brightness to another, you need to multiply Peak lumens by 10-12. The result will be an approximate value of ANSI Lumens.
However, experts do not recommend chasing high ANSI lumen brightness values. There are many professional projectors with brightness up to 3500 lm. The lower the brightness, the lower the power consumption, and at the same time, the life of the illuminator increases. Of course, if the projector will be installed in a work office or classroom where good lighting is required, it is recommended to purchase a model with ANSI Lumens brightness of 4000 lumens and more.
Static contrast
The static contrast of the image provided by the projector.
Static contrast refers to the maximum difference between the brightest white light and the darkest black that a projector can provide within a single frame. Unlike dynamic contrast (see below), this parameter describes not conditional, but quite real capabilities of the device, achievable without the use of any additional tricks like auto-brightness. And since the quality of colour reproduction and detailing depend on contrast, the higher this indicator, the lower the likelihood that details will be indistinguishable in bright or dark areas.
Colour gamut (DCI-P3)
Any color gamut is indicated as a percentage, but not relative to the entire variety of visible colors, rather to a conditional color space (color model). This is because no modern screen can display all the colors visible to the human eye. Nevertheless, the larger the color gamut, the wider the capabilities of the projector, and the better its color reproduction quality.
DCI-P3 is a professional color model mainly used in digital cinemas. It is significantly broader than the standard sRGB, which results in more accurate and high-quality colors. Consequently, the percentage values are lower—for example, 115% coverage in sRGB corresponds to approximately 90% coverage in DCI-P3. At the same time, projectors with high DCI-P3 coverage are quite expensive.
Throw distance, min
The closest distance to the screen that the projector can be used on. Typically, this is the minimum distance at which the image from the projector remains in focus.
This parameter is especially important if the device is to be placed at a small distance from the screen (for example, in a cramped room). Some modern projectors are able to work normally at a distance of 10 – 20 cm. Also note that the throw distances are determined primarily by the lens, and if the initial range of these distances does not suit you, perhaps the situation can be solved by replacing the optics.
Throw distance, max
The farthest distance from the screen that the projector can be used on. This is the maximum distance at which the image remains in focus and maintains acceptable brightness — at least enough for viewing in a darkened room on a high-quality screen.
It is necessary to choose according to this parameter taking into account the expected operating conditions and the distances to be dealt with. At the same time, it's ok to have a certain margin for the maximum distance — since, as already mentioned, it is usually indicated for an perfect screen and a darkened room, and such conditions are not always available. Also note that although the throw distances depend on the lens, not every projector with an interchangeable lens allows the installation of more "long-range" optics than the standard one — the device may simply not have enough brightness for an increased distance.
Image size
Size of the image projected by the projector. Usually, it is indicated as a range — from the smallest, at the minimum throw distance, to the largest, at the maximum. About throw distances, see above; here it is worth saying that the choice of diagonal size depends both on the distance between the screen and the audience, and on the format of the projector. For example, to watch a video, the best option is the situation when the distance from the viewer to the image corresponds to 3-4 diagonals, and a relatively large picture can be useful for working with presentations. More detailed recommendations for different situations can be found in special sources; here we only recall that the image must fit on the screen used with the projector.
Number of speakers
The number of built-in speakers provided in the projector.
The
presence of speakers in itself allows user to play sound (for example, accompaniment to the displayed video) without speakers and other additional equipment. However the quality of such sound usually turns out to be low; for a clear sound, you still need external sound system. However, in some cases this is quite enough; in addition, there are projectors with advanced built-in speakers.
The number of speakers can be one or two. In the first case, we are talking only about the playback of monophonic sound, without any surround effect. And two speakers already represent a stereo system. The subwoofer is considered a separate function and does not affect the number of speakers in this paragraph.
Sound power
The nominal power of the sound system installed in the projector.
The higher this power, the louder the sound the device can produce, the better it will be heard in a large room and/or noisy environment. At the same time, it is worth noting two nuances. First, built-in speakers are usually made relatively low-power — otherwise they would take up too much space. Secondly, most modern projectors allow the connection of external sound system (see "Audio connectors"), more powerful than the built-in one. So it makes sense to pay attention to this indicator if you initially plan to use the "native" sound of the projector. Detailed recommendations on the required power for certain conditions can be found in special sources.
Noise level (nominal)
The maximum noise level generated by the projector.
In most models, the main source of noise is the cooling system — it often uses fans to efficiently remove the heat generated by the lamp. Of course, the lower the noise level, the more convenient the projector is to use, the less inconvenience it causes, and the better the sound accompaniment of the “picture” is heard (if it is provided at all). On the other hand, as the size and power increase, the noise level also inevitably increases, and measures to reduce it significantly affect the cost of the projector.
Portable models are the
quietest (see "Main purpose") — most of them do not have active cooling and practically do not make noise, except for control keys clicking and other similar sounds. Therefore, this indicator for such projectors may not be indicated at all. The most "loud" are
professional projectors — in them the noise level can reach 50 dB (human speech level at medium volume).