USA
Catalog   /   Photo   /   Digital Cameras

Comparison Nikon Z5II kit 24-50 vs Nikon Z5 kit 24-50

Add to comparison
Nikon Z5II  kit 24-50
Nikon Z5  kit 24-50
Nikon Z5II kit 24-50Nikon Z5 kit 24-50
New New product is expectedCompare prices 46
User reviews
0
0
11
TOP sellers
Wi-Fi 802.11ac. Full frame. Smartphone control. 5-axis matrix stabilization. Nimble and tenacious autofocus. High rate of fire. OLED viewfinder. Swivel touch display.
Wi-Fi 802.11ac. Full frame. Smartphone control. 5-axis matrix stabilization. Nimble and tenacious autofocus. High rate of fire. OLED viewfinder. Swivel touch display.
Camera type"mirrorless" (MILC)"mirrorless" (MILC)
Sensor
SensorCMOS (CMOS)CMOS (CMOS)
Sensor sizefull framefull frame
Total MP2525
Effective MP number2424
Maximum image size6048x4032 px6016x4016 px
Light sensitivity (ISO)50-20480050-102400
RAW format recording
Lens
Mount (bayonet)Nikon ZNikon Z
Kit lens
Aperturef/4.0 - f/6.3f/4.0 - f/6.3
Focal length24 - 50 mm24 - 50 mm
Optical zoom2.12.1
Manual focus
Image stabilizationwith matrix shiftwith matrix shift
Photo shooting
HDR
2 control dials
White balance measuring
Auto bracketing
Exposure modes
auto
shutter priority
aperture priority
manual mode
auto
shutter priority
aperture priority
manual mode
Metering system
point
centre-weighted
sensor (estimated)
point
centre-weighted
sensor (estimated)
Video recording
Full HD (1080)1920x1080 px 120 fps1920x1080 px 60 fps
Ultra HD (4K)4032x2268 px 30 fps3840x2160 px 30 fps
File recording formatsMPEG-4, H.264MPEG-4, H.264
Manual video focus
Connection ports
HDMI v 1.4
headphone Jack
microphone Jack
HDMI v 1.4
headphone Jack
microphone Jack
Focus
Autofocus modes
one shot
tracking
in face
one shot
tracking
in face
Focus points299 шт273 шт
Touch focus
Contour enhancement
Viewfinder and shutter
Viewfinderelectronicelectronic
Viewfinder crop0.8 x0.8 x
Shutter speed900 - 1/8000 с30 - 1/8000 с
Continuous shooting14 fps4.5 fps
Shutter typeelectronic/mechanicalmechanical
Screen
Screen size3.2 ''3.2 ''
Screen resolution2100 thousand pixels1040 thousand pixels
Touch screen
Rotary display
Memory and communications
2 card slots
Memory cards typesSD, SDHC, SDXCSD, SDHC, SDXC,
Communications
Wi-Fi 5 (802.11ac)
Bluetooth
smartphone control
Wi-Fi
Bluetooth
smartphone control
Flash
Built-in flash
External flash connect
Power source
Power source
battery
battery
Battery modelEN-EL15cEN-EL15c
Shots per charge330 шт470 шт
General
Materialaluminium alloyaluminium alloy
Protectiondustproof, waterproofdustproof, waterproof
Dimensions (WxHxD)134x101x72 mm134x101x70 mm
Weight700 g675 g
Color
Added to E-Catalogapril 2025september 2020
Glossary

Maximum image size

The maximum size of photos taken by the camera in normal (non-panoramic) mode. In fact, this paragraph indicates the highest resolution of photography — in pixels vertically and horizontally, for example, 3000x4000. This indicator directly depends on the resolution of the matrix: the number of dots in the image cannot exceed the effective number of megapixels (see above). For example, for the same 3000x4000, the matrix must have an effective resolution of at least 3000*4000 = 12 million dots, that is, 12 MP.

Theoretically, the larger the size of the photo, the more detailed the image, the more small details can be conveyed on it. At the same time, the overall image quality (including the visibility of fine details) depends not only on resolution, but also on a number of other technical and software factors; see "Effective MP number" for more details.

Light sensitivity (ISO)

The sensitivity range of a digital camera matrix. In digital photography, light sensitivity is expressed in the same ISO units as in film photography; however, unlike film, the light sensitivity of the sensor in a digital camera can be changed, which gives you more options for adjusting shooting parameters. High maximum light sensitivity is important if you have to use a lens with a low aperture (see Aperture), as well as when shooting dimly lit scenes and fast-moving objects; in the latter case, high ISO allows you to use low shutter speeds, which minimizes image blur. However, note that with an increase in the value of the applied ISO, the level of noise in the resulting images also increases.

Full HD (1080)

The maximum resolution and frame rate of video captured by the camera in Full HD (1080p).

The traditional Full HD video resolution in this case is 1920x1080; other options are more specific and practically do not occur in modern cameras. Regarding the frame rate, it is worth noting first of all that a normal (not slow-motion) video is shot at a speed of up to 60 fps, and in this case, the higher the frame rate, the smoother the video will be, the less jerks will be noticeable when moving in the frame. If the frame rate is 100 fps or higher, this usually means that the camera has a slow-motion video mode.

Ultra HD (4K)

The maximum resolution and frame rate of video captured by the camera in the Ultra HD (4K) standard.

UHD 4K refers to resolutions with a frame size of approximately 4,000 horizontal pixels. Specifically, in cameras for video shooting, resolutions of 3840x2160 and 4096x2160 are most often used. Regarding the frame rate, it is worth noting first of all that a normal (not slow-motion) video is shot at a speed of up to 60 fps, and in this case, the higher the frame rate, the smoother the video will be, the less jerks will be noticeable when moving in the frame. If the frame rate is 100 fps or higher, this usually means that the camera has a slow-motion video mode.

Focus points

The number of focus points (autofocus) provided in the design of the camera.

The focus point is the point (more precisely, a small area) in the frame from which the autofocus system reads data for focusing. The simplest systems work with a single point, but their capabilities are very limited, and this option is practically not found today. Modern digital cameras have at least three focus sensors, and in the most advanced models this figure can reach several dozen.

The more autofocus sensors there are in the camera, the more advanced its autofocus capabilities will be, the more specific techniques it allows you to use. In this case, the selection of specific points used can be carried out both automatically, simultaneously with the choice of the subject program, and manually (however, the second option is more typical for professional cameras). In addition, the abundance of focus points has a positive effect on the quality of the tracking autofocus (see "Autofocus Modes").

In general, more focus sensors are generally considered a sign of a more advanced camera; however, differences in quality become really noticeable only if the difference in the number of points is significant - for example, if we compare models with 9 and 39 points. A lot also depends on the location of the points in the frame - it is believed that sensors distributed over a wide area work better than densely located in the center of the frame, even if their number is the same.

Shutter speed

The range of shutter speeds that the camera is capable of shooting.

Exposure is the time between opening and closing the shutter (see below), in other words, the period of time captured in the photo. For different purposes, methods and conditions of shooting, different shutter speeds will be optimal. Small values (in modern cameras they can reach thousandths of a second) are important when shooting fast-moving objects and for shooting at long distances — in the first case, they minimize the effect of image blur from the movement of the object, in the second — the effect of camera shake in hands. However, for shooting at low shutter speeds, a good matrix light sensitivity or high-aperture optics are required (see above). Long shutter speeds (measured in seconds) are used for shooting in low light conditions — such as city streets at night or the starry sky — and also allow you to create the effect of movement in the frame. Accordingly, the greater the shutter speed range, the wider the camera's ability to choose the option that is optimal for certain conditions.

Continuous shooting

Continuous shooting speed provided by the camera at the maximum frame resolution. At lower resolutions, the speed may be higher, but this value is considered the key characteristic.

In continuous shooting, the photographer presses the button, and the camera takes several shots in a row, usually at intervals of a fraction of a second. Such shooting is convenient, for example, for capturing fast-moving objects: it allows you to choose the most successful from a series of frames, or to show the dynamics of movement using the entire series. And the higher the speed, the more effective the shooting, the more frames the camera can capture in a period of time. On the other hand, speed requires appropriate hardware and can significantly affect the cost.

Shutter type

The shutter is a system that regulates the duration of exposure, that is, the effect of light on the matrix (for more details on exposure, see above). Here are the main types of such systems:

Electronic. A type of shutter that is only suitable for digital cameras. Such systems do not have moving mechanical parts; exposure in them is carried out electronically. At the moment the shutter is pressed, when the shutter is “opened”, the matrix is completely reset; and after a certain time (corresponding to the exposure time), when the shutter is “closing”, the accumulated charge is read from it. This allows you to carry out full-fledged photography and work with different shutter speeds without using complex structures. Another advantage over the mechanical shutters described below is that such systems are perfect for Live View (see above): the matrix can constantly broadcast the image on the screen, only sometimes “interrupting” directly into shooting. On the other hand, such a constant work increases the likelihood of heating and the appearance of additional noise in the picture. To compensate for this shortcoming, various solutions are used, and in most cases it is almost invisible; however, for professional photography, electronic shutters are still considered less suitable than mechanical shutters.

Mechanical. There are many types of mechanical shutters, however, in modern digital c...ameras, systems in the form of a pair of shutters are predominantly found. When the shutter opens, one of the curtains moves, and then the second “catches up” with it, closing the matrix. The main advantage of mechanical shutters is that when using them, the matrix always remains closed and opens only at the moment of shooting for a time corresponding to the set shutter speed (similar to how it happens in film cameras). Due to this, it is possible to avoid heating the sensor and the associated increase in image noise. On the other hand, additional mechanisms noticeably affect the weight, dimensions, cost and power consumption of the camera; when shooting fast moving objects, distortions may occur, and at low temperatures — failures and even failures. In addition, cameras with mechanical shutters are mainly designed to work through an optical viewfinder. For an electronic viewfinder or Live View mode (see above), you either need to install an auxiliary matrix (which further complicates and increases the cost of the design), or completely open the shutters and actually shoot in electronic shutter mode, which makes the very idea of \u200b\u200b"mechanics" meaningless. As a result, this type of shutter is currently used mainly in SLR cameras (see "Camera type") of the middle and top levels; it is also found in other varieties, but much less frequently.

— Electronic/mechanical. Systems that combine both options described above; more precisely, even — mechanical shutters, supplemented by the ability to work in electronic mode. One of the key disadvantages of purely mechanical systems is their poor suitability for ultra-short shutter speeds — it is not easy to provide the necessary shutter speed, and besides, the mechanism is subjected to significant loads in this mode. To eliminate this shortcoming, electronic-mechanical systems were created. They work as follows: at short shutter speeds, a purely mechanical method of operation is used up to a certain limit, and when the possibilities of mechanics are not enough, a combined mode is used. In this mode, the shutter curtains open for a relatively long time (longer than the required shutter speed), while the matrix works electronically (see above for more details), providing the required shutter speed. Theoretically, the combined method allows you to effectively shoot at ultra-low shutter speeds, but in fact the quality of the images is relatively low, and the “hybrid” shutter is often more of a marketing ploy than a really useful tool.

Screen resolution

The size of the camera's native display in pixels. The higher the resolution of the display, the more smooth and detailed the image it reproduces, the less noticeable the graininess and individual pixels, and the more the display as a whole is pleasing to the eye. On the other hand, the high-resolution display affects the cost of the camera itself (albeit quite slightly).

Unlike the rest of modern electronics, it is customary for cameras to indicate this parameter not as the horizontal and vertical size, but as the total number of pixels on the screen. To date, screens of 230K pixels correspond to the entry level, 460K pixels to the average, more than 900K pixels to the advanced.
Nikon Z5 often compared