Dark mode
USA
Catalog   /   Automotive   /   Car Audio   /   Car Amplifiers

Comparison Ural DB 4.150 vs Pioneer GM-D8604

Add to comparison
Ural DB 4.150
Pioneer GM-D8604
Ural DB 4.150Pioneer GM-D8604
Outdated Product
from $188.00 up to $199.28
Outdated Product
TOP sellers
ClassA/BD
Number of channels44
Specs
Channel power (@1-ohms)150 W
Channel power (@2-ohms)260 W125 W
Channel power (@4-ohms)150 W100 W
Bridge connection2 x 470 W2 x 300 W
Resistance adjustment
Max. power1000 W1200 W
Max. impedance4 Ohm4 Ohm
Frequency range10 – 50000 Hz10 – 50000 Hz
Signal-to-noise ratio100 dB95 dB
Functions
Bass Boost function
low pass filter (LPF)
high pass filter (HPF)
Bass Boost function
low pass filter (LPF)
high pass filter (HPF)
General
Remote control
Fuse rating100 А20 А
Dimensions450х230х55 mm365x200x60 mm
Weight2.6 kg
Added to E-Catalogapril 2016february 2014

Class

-A. Amplifiers with analogue signal processing. The design of their electronic circuits is such that the current through the amplifying stage is not interrupted during operation (unlike class B). Due to this, the output signal repeats the input signal as accurately as possible, and even at low powers the level of distortion is minimal. This allows the use of such amplifiers even in Hi-Fi systems. On the other hand, class A devices consume full power all the time, whether they are outputting a signal or not, while their power consumption is very significant, and the efficiency (and, accordingly, the output power) is quite low. In addition, this class is characterized by significant heat dissipation — especially at idle, when the power consumed is converted mainly into heat.

A/B. This class of amplifiers belongs to analogue devices. Without going into technical details, we can say that it combines the principles of operation of classes A (high sound quality with low efficiency) and B (good energy efficiency, but relatively low sound quality). As a result, class A / B devices have a higher efficiency and lower heat dissipation than “pure” class A, and although they lose a little in sound quality, they significantly exceed “pure” class B in this indicator. Among these amplifiers are also found Hi-Fi level models.

D. Amplifiers using digital signal proc...essing. Their main advantage is high efficiency, which provides good output power (significantly higher than that of the A / B-class). In addition, the dimensions of such devices are very compact. At the same time, the output sound quality is somewhat lower, it is more prone to distortion, and with the same sound quality and other things being equal, a class D model will cost significantly more than A / B. This scheme includes many single-channel (see "Number of channels") amplifiers designed for subwoofers — in this case, power is much more important than signal purity.

B/D. Despite the name hinting at hybrid operation, these amplifiers are not a hybrid of classes B and D, but digital devices that have some design differences from traditional class D models (see above). According to some manufacturers, these differences allow for higher efficiency than analogue classes (see above), with a lower level of distortion than in the "regular" class D. However, such devices are quite expensive.

G. A variety of analogue amplifiers designed to increase the efficiency of such devices and, accordingly, provide high power. The design of class G models is based on the fact that the amplifier is rarely used at full capacity. To optimize performance in such models, two voltage options are used to power the output stage, switched depending on the level (in other words, volume) of the input signal. At low volume, low voltage is used, and to provide high power, the device is transferred to high voltage. This not only significantly increases the efficiency, but also provides good sound quality, but the amplifiers themselves are complex in design and expensive.

Channel power (@1-ohms)

Rated power output by the amplifier per channel when a load (speakers) with a nominal impedance of 1 ohm is connected to it (for more details, see "Maximum impedance"). By rated power, conscientious manufacturers most often mean the so-called RMS (Rated Maximum Sinusoidal) — the highest output power at which the amplifier is guaranteed to work for an hour without damage; it is much less than the maximum value (see below for more details).

In general, the higher the rated power, the higher the sound volume that the amplifier can produce (ceteris paribus, including the characteristics of the connected acoustics). This indicator also determines compatibility with car audio: the speakers connected to each of the channels should ideally have the same rated power (in fact, a deviation of 10-15% is allowed).

Channel power (@2-ohms)

Rated power output by the amplifier per channel when a load (speakers) is connected to it with a nominal impedance of 2 ohms. For details, see "Nom. channel power (at 1 Ohm)”.

Channel power (@4-ohms)

Rated power output by the amplifier per channel when a load (speakers) with a nominal impedance of 4 ohms is connected to it. For details, see "Nom. channel power (at 1 Ohm)”.

Bridge connection

Rated power delivered by the amplifier to a load connected in a bridge circuit. For more information about the rated power, see "Nom. channel power (at 1 Ohm)”.

With a bridged connection, the speaker is connected not to one channel, but to two at the same time — the “positive” connector of one channel and the “negative” connector of the other are used. If the amplifier has a similar format of operation, then such a pair of channels operates in antiphase, due to which the power is summed up. This allows you to connect speakers to the amplifier, the power of which is twice the nominal power of the device: for example, at 150 watts per channel, 300 watts of acoustics can be bridged. If there are 4 or more channels, it becomes possible to use several speakers according to the "bridge" scheme. This is usually directly indicated in the specifications — for example, the entry "2x300 W" in the "Bridge connection" item means the ability to work with two speakers, each with 300 W.

The requirements for load resistance when connecting with a bridge are the same as for conventional; see "Maximum Resistance" for details.

Max. power

The highest output power provided by the amplifier. It is worth noting that this indicator is not standardized, and different manufacturers may mean different values \u200b\u200bfor it — for example, the highest power of short-term, in a fraction of a second, peaks (power surges), the highest power that the amplifier can transfer for several seconds, or even the power at which the device will fail. Therefore, it makes no sense to compare different models with each other in terms of maximum power. But when choosing acoustics for an amplifier (or vice versa), this parameter can be very useful: it is desirable that the maximum power of the speaker be at least twice as high as that of the amplifier. This will reduce the risk that a power surge will damage the speakers.

Signal-to-noise ratio

One of the main parameters that determine the sound quality of the amplifier as a whole: it describes the ratio of the useful signal (in other words, “clean” sound) and various extraneous noises. This takes into account almost all noise — both due to external causes (for example, electrical "pickup"), and created by the device itself (for example, due to heating during operation). Accordingly, the higher the signal-to-noise ratio, the less audibility of various interferences and the clearer the sound is obtained (of course, under normal operating parameters). The average for car audio is 95-100 dB, but in advanced models this value can be significantly higher.

At the same time, this parameter is not critical for monoblocks designed for subwoofers — most of the interference is high-frequency and will simply not be heard on the low-frequency speaker. The sound quality in this case is highly dependent on the characteristics of the speaker (much more than in multi-channel models), and is weakly related to the “noiselessness” of the amplifier.

Fuse rating

The rating of the fuse installed in the amplifier is the current strength, at which the fuse operates, opening the circuit and de-energizing the device in order to avoid unpleasant consequences (see "Protection — Short circuit protection"). In some models, several fuses can be installed — in this case, this is usually directly indicated in the characteristics, and the current required to operate the protection corresponds to the sum of the ratings. For example, the rating marked "4x25 A" corresponds to four fuses that operate at a current strength of more than 100 A.

This parameter determines, first of all, the features of the power connection: it is desirable that the fuse in the corresponding section of the on-board network of the car be of a higher rating than in the amplifier, otherwise it may burn out at a current that is quite normal for the device. In addition, the fuse rating is related to the power rating of the amplifier and can be useful if you have doubts about the reliability of the data specified by the manufacturer. There are special formulas that allow you to calculate the maximum possible rated power depending on the fuse rating and device class (see above).
Pioneer GM-D8604 often compared