USA
Catalog   /   Computing   /   Monitors

Comparison MSI MAG 275QF 27 " black vs Philips Evnia 27M2N5500 27 " black

Add to comparison
MSI MAG 275QF 27 "  black
Philips Evnia 27M2N5500 27 "  black
MSI MAG 275QF 27 " blackPhilips Evnia 27M2N5500 27 " black
Compare prices 4Compare prices 1
User reviews
0
0
0
1
TOP sellers
Product typegaminggaming
Size27 "27 "
Screen
Panel typeIPSIPS
Surface treatmentanti-glareanti-glare
Resolution2560x1440 (16:9)2560x1440 (16:9)
Pixel size0.23 mm0.23 mm
Response time (GtG)0.5 ms1 ms
Response time (MPRT)0.5 ms
Refresh rate180 Hz180 Hz
Vertical viewing angle178 °178 °
Horizontal viewing angle178 °178 °
Brightness300 cd/m²350 cd/m²
Static contrast1 000:11 200:1
Dynamic Contrast100 000 000:1
Colour depth1.07 billion colours (8 bits + FRC)1.07 billion colours (8 bits + FRC)
Colour space (NTSC)108 %
Colour space (sRGB)101 %125 %
Colour space (Adobe RGB)82 %106 %
Colour gamut (DCI-P3)78 %93.5 %
HDR+DisplayHDR 400
TÜV Rheinland certificate
Connection
Video transmission
DisplayPort v 1.4
2xHDMI
v 2.0
DisplayPort v 1.4
2xHDMI
v 2.0
Connectors (optional)
mini-Jack output (3.5 mm)
mini-Jack output (3.5 mm)
Features
Features
Flicker-Free
Adaptive-Sync
Flicker-Free
AMD FreeSync
NVIDIA G-Sync Compatible
Adaptive-Sync
Portrait pivot
Screen swivel
Height adjustment
Game Features
aim
timer
FPS display
brighten darker areas
aim
brighten darker areas
General
Wall mountVESA 100x100mm
Power consumption30 W
Energy class (new)E
Dimensions (WxHxD)613x455x220 mm614x519x261 mm
Dimensions without stand (WxHxD)613x361x58 mm615x368x60 mm
Weight4 kg5.68 kg
Weight without stand3.6 kg3.86 kg
Color
Added to E-Catalogjuly 2024may 2024
Glossary

Response time (GtG)

The time each individual pixel on the monitor takes to switch from one state to another. The lower the response time, the faster the matrix responds to the control signal, resulting in less delay and better image quality in dynamic scenes.

Note that in this case, the gray-to-gray method is used (the time it takes to switch from 10% gray to 90% gray). Pay attention to this parameter if the monitor is specifically purchased for fast-paced games, movie watching, or other applications involving quick screen movements. However, there’s no need to chase the fastest models. It’s not often possible to discern the difference between 1 ms and 5 ms. For most scenarios, monitors with a 4 ms response time will suffice. In any case, it’s best to rely on live impressions for a true comparison.

Response time (MPRT)

The parameter expresses how long an object moving in the frame is displayed on the screen until it completely disappears. The lower this indicator, the more realistic dynamic scenes look on the monitor. The reaction of the matrix to movements clearly shows the time of existence of the trail from the changing picture. The MPRT parameter is more dependent on the refresh rate of the monitor screen than on the pixel response time. To reduce its value, the Motion Blur Reduction (MBR) function is often used, which briefly turns off the backlight at the end of the time of dynamic frames in order to increase the clarity of dynamic scenes.

Brightness

The maximum brightness provided by the monitor screen.

Choosing a monitor with high brightness is especially important if the device is going to be used in bright ambient light — for example, if the workplace is exposed to sunlight. A dim image can be "dampened" by such lighting, making work uncomfortable. In other conditions, the high brightness of the screen is very tiring for the eyes.

Most modern monitors give out about 200 – 400 cd / m2 — this is usually quite enough even in the sun. However, there are also higher values: for example, in LCD panels (see "Type") the brightness can reach several thousand cd/m2. This is necessary taking into account the specifics of such devices — the image must be clearly visible from a long distance.

Static contrast

Static contrast provided by the monitor screen.

This value describes the difference between the brightest whites and darkest blacks that the screen is capable of producing. In this case, unlike dynamic contrast (see below), the difference is indicated on the condition that the brightness of the screen backlight remains unchanged. In other words, this is the contrast that is guaranteed to be achievable within one frame. Static contrast is inevitably lower than dynamic. However, it is she who describes the basic capabilities of the screen.

The minimum static contrast ratio for tolerable image quality is considered to be 250:1, but even the most modest modern monitors give out about 400:1 (and a value of 1000:1 is not the highest class), and in high-end models this figure can reach 2000:1 and even more. .

Dynamic Contrast

Dynamic contrast provided by the monitor screen.

Dynamic contrast refers to the difference between the brightest white at maximum backlight intensity and the deepest black at minimum backlight. In this way, this indicator differs from static contrast, which is indicated with a constant backlight level (see above). Dynamic contrast ratio can be expressed in very impressive numbers (in some models — more than 100,000,000: 1). However, in fact, these figures are poorly correlated with what the viewer sees: it is almost impossible to achieve such a difference within one frame. Therefore, dynamic contrast is most often more of an advertising than a practically significant indicator, it is often indicated precisely in order to impress an inexperienced buyer. At the same time, we note that there are "smart" backlight technologies that allow you to change its brightness in certain areas of the screen and achieve a higher contrast in one frame than the claimed static one; these technologies are found mostly in premium monitors.

Colour space (NTSC)

The colour gamut of the monitor is based on the NTSC colour model.

Any colour gamut is indicated as a percentage, however, not relative to the entire variety of visible colours, but relative to the conditional colour space (colour model). This is due to the fact that no modern screen is able to display all the colours visible to humans. However, the larger the colour gamut, the wider the monitor's capabilities, the better its colour reproduction.

Specifically, NTSC is one of the first colour models created back in 1953 with the advent of colour television. It is not used in the production of modern monitors, but is often used to describe and compare them. NTSC covers a wider range of colours than sRGB, which is standard in computer technology: for example, coverage of only 85% in NTSC gives about 110% in sRGB. So the colour gamut for this model is usually given for advertising purposes — as a confirmation of the high class of the monitor; a very good indicator in such cases is considered to be 75% or more.

Colour space (sRGB)

Monitor colour gamut Rec. 709 or sRGB.

Any colour gamut is indicated as a percentage, however, not relative to the entire variety of visible colours, but relative to the conditional colour space (colour model). This is due to the fact that no modern screen is able to display all the colours visible to humans. However, the larger the colour gamut, the wider the monitor's capabilities, the better its colour reproduction.

Nowadays, sRGB is actually the standard color model adopted for computer technology; This is what is used in the development and production of most video cards. For television, the Rec. standard, similar in parameters, is used. 709. In terms of the range of colors, these models are identical, and the percentage of coverage for them is the same. In the most advanced monitors it can reach or even exceed 100%; These are the values that are considered necessary for high-end screens, incl. professional.

Colour space (Adobe RGB)

Monitor colour gamut based on the Adobe RGB colour model.

Any colour gamut is indicated as a percentage, however, not relative to the entire variety of visible colours, but relative to the conditional colour space (colour model). This is due to the fact that no modern screen is able to display all the colours visible to humans. However, the larger the colour gamut, the wider the monitor's capabilities, the better its colour reproduction.

Specifically, the Adobe RGB colour model was originally developed for use in printing; the range of colours covered by it corresponds to the capabilities of professional printing equipment. Accordingly, support for this model and its extensive colour gamut are important, first of all, if the monitor is used in the design and layout of high-quality printed products. In the most advanced screens, this figure can be 99% or even more. At the same time, we note that Adobe RGB is wider than the popular sRGB, and the percentage figures for this model are smaller: for example, 99% in RGB often gives only about 87% in Adobe RGB.

Colour gamut (DCI-P3)

The color gamut of the monitor according to the DCI P3 color model.

Any color gamut is indicated in percentages, but not relative to the entire variety of visible colors, rather relative to a conventional color space (color model). This is because no modern screen can display all the colors visible to the human eye. Nevertheless, the larger the color gamut, the broader the monitor's capabilities, and the better its color reproduction quality.

DCI P3 is a professional color model mainly used in digital cinemas. It is significantly broader than the standard sRGB, providing more accurate and high-quality colors. Accordingly, the percentage values are lower—for example, 115% coverage in sRGB corresponds to approximately 90% coverage in DCI P3; in the most advanced modern monitors, coverage according to this standard is 98 – 100%. At the same time, supporting DCI-P3 is costly, which is why it is mainly found in high-end monitors for professional and gaming purposes.
MSI MAG 275QF often compared
Philips Evnia 27M2N5500 often compared