USA
Catalog   /   Computing   /   Monitors

Comparison MSI MAG321QR-QD 31.5 " black vs MSI MAG 325CQRF-QD 31.5 " black

Add to comparison
MSI MAG321QR-QD 31.5 "  black
MSI MAG 325CQRF-QD 31.5 "  black
MSI MAG321QR-QD 31.5 " blackMSI MAG 325CQRF-QD 31.5 " black
Outdated ProductCompare prices 1
TOP sellers
Console mode to eliminate possible compatibility issues.
Product typegaminggaming
Size31.5 "31.5 "
Screen
Curved screen1000R
Panel typeQLEDQLED
Surface treatmentanti-glarematte
Resolution2560x1440 (16:9)2560x1440 (16:9)
Pixel size0.27 mm0.27 mm
Response time (GtG)1 ms
Response time (MPRT)1 ms
Refresh rate170 Hz170 Hz
Vertical viewing angle178 °178 °
Horizontal viewing angle178 °178 °
Brightness350 cd/m²300 cd/m²
Static contrast1 200:13 500:1
Dynamic Contrast100 000 000:1100 000 000:1
Colour depth1.07 billion colours (8 bits + FRC)1.07 billion colours (8 bits + FRC)
Colour space (sRGB)140 %129 %
Colour space (Adobe RGB)98 %94 %
Colour gamut (DCI-P3)97 %97 %
HDRDisplayHDR 400+
TÜV Rheinland certificate
Connection
Video transmission
DisplayPort v 1.2
2xHDMI
v 2.0
USB C (DisplayPort Alt Mode)
DisplayPort v 1.2
2xHDMI
v 2.0
USB C (DisplayPort Alt Mode)
Charger power15 W
USB A2x2.02x2.0
Connectors (optional)
mini-Jack output (3.5 mm)
mini-Jack output (3.5 mm)
Features
Features
KVM switch
Flicker-Free
AMD FreeSync Premium
NVIDIA G-Sync Compatible
Adaptive-Sync
Flicker-Free
AMD FreeSync Premium
Adaptive-Sync
Screen swivel
Height adjustment
Game Features
aim
timer
FPS display
brighten darker areas
aim
brighten darker areas
General
RGB lighting
RGB lighting syncMSI Mystic Light SyncMSI Mystic Light Sync
Wall mountVESA 100x100mmVESA 100x100mm
External power supply
Dimensions (WxHxD)716x476x234 mm701x479x270 mm
Color
Added to E-Catalogjanuary 2024july 2023
Glossary

Curved screen

The presence of a curved screen in the monitor design.

Such a screen has the left and right edges curved forward - it is believed that this shape significantly improves perception compared to a flat surface. At the same time, it makes sense to provide this feature only on fairly large diagonals - at least 30"; therefore, it is typical mainly for high-end models. It is also worth noting that in order to take advantage of all the advantages of a curved screen, you need to look at it from a certain point - at the optimal distance, strictly in the center; however, for computer monitors this is usually not a problem.

The main parameter of a curved screen is the radius of curvature. It is indicated in millimeters along the radius of a circle, the bend of which corresponds to the bend of the monitor: for example, the designation 1800R indicates a radius of 1.8 m.

The smaller the number in this designation, the more curved the screen (all other things being equal). At the same time, some manufacturers claim that the ideal curvature value is 1000R: supposedly, it is with this curvature of the screen that the image on it turns out to be as close as possible to a person’s natural field of vision, and the closer the curvature of the monitor is to 1000R, the better the viewing experience. However, in practice a lot depends on personal preference; and when viewed from a long distance (exceeding the radius of curvature by one a...nd a half times or more), all the advantages of a curved screen are lost.

Surface treatment

Modern monitors can use displays with both glossy and matte screen surfaces. A matte surface is in some cases more preferable due to the fact that on a glossy screen, when exposed to bright light, noticeable glare appears, sometimes interfering with viewing. On the other hand, glossy screens offer better picture quality, higher brightness, and richer colours.
Due to the development of technology, monitors with a special anti-glare coating have appeared on the market, which, while maintaining all the advantages of a glossy screen, creates significantly less visible glare in bright ambient light.

Response time (GtG)

The time each individual pixel on the monitor takes to switch from one state to another. The lower the response time, the faster the matrix responds to the control signal, resulting in less delay and better image quality in dynamic scenes.

Note that in this case, the gray-to-gray method is used (the time it takes to switch from 10% gray to 90% gray). Pay attention to this parameter if the monitor is specifically purchased for fast-paced games, movie watching, or other applications involving quick screen movements. However, there’s no need to chase the fastest models. It’s not often possible to discern the difference between 1 ms and 5 ms. For most scenarios, monitors with a 4 ms response time will suffice. In any case, it’s best to rely on live impressions for a true comparison.

Response time (MPRT)

The parameter expresses how long an object moving in the frame is displayed on the screen until it completely disappears. The lower this indicator, the more realistic dynamic scenes look on the monitor. The reaction of the matrix to movements clearly shows the time of existence of the trail from the changing picture. The MPRT parameter is more dependent on the refresh rate of the monitor screen than on the pixel response time. To reduce its value, the Motion Blur Reduction (MBR) function is often used, which briefly turns off the backlight at the end of the time of dynamic frames in order to increase the clarity of dynamic scenes.

Brightness

The maximum brightness provided by the monitor screen.

Choosing a monitor with high brightness is especially important if the device is going to be used in bright ambient light — for example, if the workplace is exposed to sunlight. A dim image can be "dampened" by such lighting, making work uncomfortable. In other conditions, the high brightness of the screen is very tiring for the eyes.

Most modern monitors give out about 200 – 400 cd / m2 — this is usually quite enough even in the sun. However, there are also higher values: for example, in LCD panels (see "Type") the brightness can reach several thousand cd/m2. This is necessary taking into account the specifics of such devices — the image must be clearly visible from a long distance.

Static contrast

Static contrast provided by the monitor screen.

This value describes the difference between the brightest whites and darkest blacks that the screen is capable of producing. In this case, unlike dynamic contrast (see below), the difference is indicated on the condition that the brightness of the screen backlight remains unchanged. In other words, this is the contrast that is guaranteed to be achievable within one frame. Static contrast is inevitably lower than dynamic. However, it is she who describes the basic capabilities of the screen.

The minimum static contrast ratio for tolerable image quality is considered to be 250:1, but even the most modest modern monitors give out about 400:1 (and a value of 1000:1 is not the highest class), and in high-end models this figure can reach 2000:1 and even more. .

Colour space (sRGB)

Monitor colour gamut Rec. 709 or sRGB.

Any colour gamut is indicated as a percentage, however, not relative to the entire variety of visible colours, but relative to the conditional colour space (colour model). This is due to the fact that no modern screen is able to display all the colours visible to humans. However, the larger the colour gamut, the wider the monitor's capabilities, the better its colour reproduction.

Nowadays, sRGB is actually the standard color model adopted for computer technology; This is what is used in the development and production of most video cards. For television, the Rec. standard, similar in parameters, is used. 709. In terms of the range of colors, these models are identical, and the percentage of coverage for them is the same. In the most advanced monitors it can reach or even exceed 100%; These are the values that are considered necessary for high-end screens, incl. professional.

Colour space (Adobe RGB)

Monitor colour gamut based on the Adobe RGB colour model.

Any colour gamut is indicated as a percentage, however, not relative to the entire variety of visible colours, but relative to the conditional colour space (colour model). This is due to the fact that no modern screen is able to display all the colours visible to humans. However, the larger the colour gamut, the wider the monitor's capabilities, the better its colour reproduction.

Specifically, the Adobe RGB colour model was originally developed for use in printing; the range of colours covered by it corresponds to the capabilities of professional printing equipment. Accordingly, support for this model and its extensive colour gamut are important, first of all, if the monitor is used in the design and layout of high-quality printed products. In the most advanced screens, this figure can be 99% or even more. At the same time, we note that Adobe RGB is wider than the popular sRGB, and the percentage figures for this model are smaller: for example, 99% in RGB often gives only about 87% in Adobe RGB.

HDR

This technology is designed to expand the range of brightness reproduced by the monitor; Simply put, an HDR model will display brighter whites and darker blacks than a "regular" display. In fact, this means a significant improvement in colour quality. On the one hand, HDR provides a very "live" image, close to what the human eye sees, with an abundance of shades and tones that a normal screen cannot convey; on the other hand, this technology allows to achieve very bright and rich colours.

Modern HDR monitors may use the DisplayHDR designation. This standard takes into account a number of parameters that determine the overall quality of HDR performance: brightness, colour gamut, colour depth, etc. Based on the results of measurements, the monitor is assigned one of the following markings: DisplayHDR 400 means relatively modest HDR capabilities, DisplayHDR 600 is average, DisplayHDR 1000 is above average, DisplayHDR 1400 is advanced. At the same time, the absence of a DisplayHDR label in itself does not mean anything: it’s just that not every HDR monitor is tested according to this standard.

Note that for the full use of HDR, you need not only the appropriate monitor, but also content (movies, television, etc.) originally created in HDR. In addition, there are several different HDR techn...ologies that are not compatible with each other. Therefore, when buying a monitor with this function, it is highly desirable to clarify which version it supports.
MSI MAG 325CQRF-QD often compared