Size
The battery sizes that the charger is compatible with. In this case, the adapters supplied in the kit (see below) are not taken into account in this paragraph, we are talking only about the memory as such.
The standard dimensions describes the shape, dimensions, connector design and operating voltage of the battery; thus, it is one of the most important parameters for determining compatibility with a particular charger.
The most popular sizes for which modern “chargers” are made can be divided into 1.5-volt (marked in Latin letters
AA,
AAA,
C,
D) and 3.7-volt (have digital markings
14500,
17500,
18650,
22650,
26650, etc. .P.). More about them:
— AAAA. The smallest version of the "finger" dimensions: batteries of the same cylindrical shape as the well-known AA and AAA, but with a size of only about 8 mm and a length of about 43 mm. Similar in application to AAA, but very poorly distributed.
— AAA. Size, colloquially known as "mini finger" or "little finger batteries": cylindrical batteries with a size of 10.5 mm and a length of 44.5 mm. They are mainly used in miniature devices for which there are not enough “tablet” bat
...teries, and larger elements are too bulky.
— AA. Classic "finger" batteries with a size of 14 mm and a length of 50 mm, one of the most popular modern standard sizes (if not the most popular). They are used in a wide variety of types and price categories of devices, including even external battery packs for SLR cameras.
- C. Batteries in the form of a characteristic "barrel". They are similar in height to finger-type AAs, but almost twice as thick - 50 mm and 26 mm, respectively - due to which they have a higher capacity.
- D. The largest dimensions of consumer grade 1.5V batteries, 34mm in size and 61mm in length. It is mainly used in high-power flashlights and devices with high energy consumption.
3.7-V batteries are indicated by a five-digit number. In it, the first two digits indicate the size (in millimeters), the remaining three indicate the length (in tenths of a millimeter). For example, the popular dimensions 18650 corresponds to a battery with a size of 18 mm and a length of 65.0 mm. It is worth noting here that there are 3.7-volt cells that are the same dimensions as the 1.5-volt ones described above (for example, the 14500 dimensions is similar to AA finger-type), but both types are not interchangeable due to the difference in voltage.
A separate category is 9-volt R22 batteries, also known as PP3: these are rectangular elements in which a pair of contacts is located on one of the ends.Min. charge current
The smallest current that the device can provide in charge mode. If this parameter is specified in the specifications, this means that this model has the ability to adjust the charge current (otherwise, only the maximum current is indicated).
Charging current is one of the most important parameters for any charger: see “Maximum charge current. And the general range of current adjustment depends on this indicator: the lower the minimum value (with the same maximum) — the more extensive the possibilities for setting up the "charger" for the specific specifics of work.
Max. charge current
The highest current that the device can provide when charging the battery (or the nominal value of the charging current, if it is not adjustable).
Charging current is one of the most important parameters for any charger: it determines the speed of the process and compatibility with certain batteries. In general, the higher the current, the faster the process, the less time it takes to charge. At the same time, some batteries may have recommendations for the optimal current strength and restrictions on its maximum values. Therefore, mindlessly chasing a powerful charger is not worth it: at first it's ok to clarify how justified such power will be.
Note that in multi-channel devices (see "Independent channels"), the maximum current strength can be achieved when only part of the channels are operating. The indicators provided when all channels are operating simultaneously are indicated separately for such models (see "Charge current (all channels)").
Charge current (all channels)
The highest current provided by a multi-channel charger (see "Independent channels") at full load, with all slots (and, accordingly, channels) operating. In fact, a guaranteed maximum current provided by a multi-channel charger, regardless of the number of channels involved.
For the total charge current, see “Maximum charge current. Here we note that the full load is a rather complex mode in which the current strength can decrease. Therefore, this parameter is specified separately.
Number of settings
The number of separate charge current settings (see above) provided in the design of the charger. For example, a device with 4 settings may provide options for 200, 400, 800 and 1000 mAh. In general, the larger this number, the more accurately you can choose the charging current for a particular situation.
Capacity recovery
The
capacity recovery function will be useful for batteries with memory effect - this time tech whose capacity has already declined. In this mode, the charger discharges and charges the battery several times in a special way, which eliminates the memory effect and restores the battery, if not to the original, then at least to a capacity close to this value.
Fault detection
A diagnostic system capable of detecting faulty batteries, disconnecting them from power and notifying the user. The
fault detection function is useful not only for checking the performance as such: a battery malfunction that is not detected in time is fraught with equipment damage, and in some cases even fires.
USB output charging gadgets
The ability to use the charger to charge portable electronics - smartphones, tablets, players, etc. As a rule, for this, a
USB port is provided in the design, for connection to which an appropriate cable is required; in fact, you can charge from such a device not only mobile gadgets, but also any equipment that can be powered from USB. True, it is worth noting that some manufacturers do not recommend using third-party devices for their equipment if they are not officially approved.
Short circuit protection
Short circuit protection function . Such a short circuit can occur both during charging (for example, due to a malfunction of the connected battery or a foreign object getting between the contacts), and during discharging (due to a failure already in the memory itself). In any case, a short circuit leads to a sharp increase in current strength and abnormal loads on equipment, the consequences of which can be breakdowns and fires. To avoid this, short circuit protection is used - usually in the form of a fuse that turns off the power when the current increases sharply. Note that such a fuse can be both reusable and disposable, requiring replacement after operation.