Dark mode
USA
Catalog   /   Tools & Gardening   /   Machines & Equipment   /   Bench Drills

Comparison Scheppach DP 18 Vario vs Optimum OPTIdrill RB 6T 3009161

Add to comparison
Scheppach DP 18 Vario
Optimum OPTIdrill RB 6T 3009161
Scheppach DP 18 VarioOptimum OPTIdrill RB 6T 3009161
Outdated ProductOutdated Product
TOP sellers
Typeverticalradial
Transmissionbeltbelt
Controlmanualmanual
Specs
Power consumption550 W750 W
Number of speeds5
Min. rotational speed440 rpm390 rpm
Max. rotational speed2580 rpm3000 rpm
Max. spindle swing430 mm
Max. spindle travel80 mm80 mm
Column diameter60 mm
Work table dimensions240x240 mm225x230 mm
Base dimensions260x430 mm
Chuck
Chuck typekeylessMorse taper and key
Morse taperMK2
Chuck diameter16 mm16 mm
Max. drilling diameter in steel16 mm
Features
Functions
speed controller
backlight
laser pointer
display
base incline
 
 
 
 
base incline
Power supply
Power sourcemainsmains
Supply voltage230 V230 V
More features
Dimensions540x380x950 mm820x335x930 mm
Weight38.5 kg47 kg
Added to E-Catalogjuly 2022january 2018

Type

Vertical. A classic type of drilling machine, designed mainly for small workpieces. A distinctive feature of such units is that the spindle with the drill in them can only move up and down, and the drill is guided to the desired point by moving the workpiece in a special movable mount. It makes sense to purchase such models for relatively simple work.

Radial. The design of the radial machine is based on a round central column, on which a spindle is mounted using a movable holder. Thanks to this, the latter can be moved not only up and down, but also in a horizontal plane — rotate relative to the column and change the distance to it. Another difference from vertical models is that the workpiece is placed motionless on the base plate, and "targeting" is carried out by moving the spindle. This makes it possible to drill rather large and massive parts with high accuracy — it is easier to move the spindle than a heavy workpiece. Thus, most of the radial machines are professional equipment, they have a fairly high performance and extensive capabilities.

Magnetic. Machines of this type during operation are fixed on a support using a magnetic (more precisely, electromagnetic) sole. In this case, both the workbench and the workpiece itself can play the role of a support, and many models can be fixed not only vertically, but also in a horizontal or inclined...position. This design makes it possible to work with large workpieces of almost any size, which is very convenient in the construction of bridges, pipelines, ships and other objects of a similar scale (when it is easier to bring the machine to the part, and not the part to the machine). At the same time, magnetic machines, usually, are quite performant and are able to work with large holes. On the other hand, such a tool is practically useless on a non-magnetic material (although with some tricks, such an application is also possible).

Power consumption

Rated power consumption of the machine. In this case, the total power consumption of the machine is indicated, which, as a rule, is equal to the power of the main engine responsible for rotating the spindle. The design may also include other motors - for example, for automatic feeding (see “Control”) or coolant pumping (see “Functions”) - they are also taken into account. The “gluttony” of such motors is relatively low for low-power machines, and the power of the main engine is one of the main characteristics for any machine: it determines the class of the unit and its general capabilities.

A more powerful motor allows you to drill at higher speeds (which reduces drilling time) and/or with higher torque (important for hard materials and large size drills/bits). Accordingly, the more powerful the machine, the more advanced, as a rule, it is, the more opportunities are available when working with it. The downside of this is that with increasing power, the dimensions, weight, price and, accordingly, energy consumption of the unit increase. Therefore, you need to choose based on this indicator taking into account the work for which the machine is purchased. So, for simple tasks (for example, a home workshop, where you plan to work only from time to time), a power of about 300 - 600 W is quite sufficient, for daily use in relatively “light” production (for example, furniture) - from 600 W to 1 kW, but for large metal parts, models fro...m 1 kW and above are recommended. We also note that, in addition to power, you should also focus on the maximum drilling size (see below).

Number of speeds

The number of spindle speeds provided in the design of the machine.

The more speeds(with the same difference between the minimum and maximum number of revolutions, see below) — the more options the operator has to choose the operating mode and the more accurately the machine can be adjusted to the specifics of a particular task. However the specific values of fixed speeds, even for similar models, may be different; but most of the time the difference is not significant. In addition, multi-speed machines can be supplemented with smooth speed control (see "Functions"), which allows you to fine-tune the operating mode even more precisely.

Note that switching speeds can be done in different ways: in some models this is done literally at the touch of a button, in others you need to delve into the gearbox or belt drive.

Min. rotational speed

The lowest spindle speed provided by the drilling machine.

Note that this parameter is indicated only for models with more than one speed (see "Number of speeds") and/or speed control (see "Functions") — that is, if the speed can be changed one way or another. See “Maximum number of revolutions"; here we note that the ability to work at low speeds in some cases is critical — for example, when threading. Accordingly, the lower the minimum speed, the better the machine is suitable for such work, other things being equal. The most "slow" modern models are able to rotate at a speed of 30 – 40 rpm.

Max. rotational speed

The highest spindle speedprovided by a drilling machine; for models with only one speed, it is also indicated in this paragraph.

For the same engine power (see above), high RPM provides good performance, but torque is reduced; at lower speeds, on the contrary, the pulling force is increased, allowing you to “bite” into stubborn materials and make it easier to work with large diameter drills. Specific recommendations for optimal speeds depending on the type of material and drilling diameter can be found in special sources. At the same time, we note that a high-speed machine will not necessarily be “weak” in terms of torque — after all, many units allow you to reduce the rotation speed. However, efficient operation at high speeds still requires a fairly powerful engine, which accordingly affects the cost of the unit. Accordingly, it makes sense to look for a “fast” machine if you plan to work a lot with relatively soft materials, such as wood. But for metal, stone, etc. it is better to choose a relatively "slow" unit.

Max. spindle swing

The largest spindle overhang provided in the design of the machine.

The overhang is the distance from the centre of the spindle to the supporting column. The maximum overhang corresponds to the greatest distance from the edge of the workpiece to the centre of the planned hole, at which this hole can be drilled on this machine; if this distance is greater than the overhang, the workpiece will rest against the support column and the drill simply will not reach the right place.

Note that this parameter is relevant only for vertical and radial machines (moreover, in the first case, the overhang is generally unchanged; see "Type"). But magnetic models do not have a limit on the size of the workpiece, so the overhang is not indicated for them at all.

Column diameter

The diameter of the support column used in the machine. In fact, it is a purely reference indicator that does not play a special role in the normal use of the unit; data on the diameter of the column may be needed only for specific tasks such as repair and maintenance.

Work table dimensions

Dimensions of the base plate installed in the machine.

The base plate is the surface on which the workpiece is placed during operation. Accordingly, the larger this surface, the better this model is suitable for working with large parts (especially since the dimensions of the vise for the workpiece installed in many models depend on the size of the plate). However, usually manufacturers choose a base plate, focus on the overall level of the unit and approximately assuming the largest size of the workpiece with which it will be used. And magnetic machines are not equipped with a base plate at all (for more details, see "Type").

Note that for base plates, dimensions are usually indicated by the greatest length and width, and regardless of the shape. This means that, for example, a plate measuring 300x300 mm can be not only square, but also round.

Base dimensions

The dimensions of the base of the machine — the platform, thanks to which it is able to stand steadily on the floor or workbench. This indicator allows you to estimate how much free space is needed to accommodate the unit. More powerful, larger and, accordingly, heavier machines have a larger base diameter.
Scheppach DP 18 Vario often compared