USA
Catalog   /   Sound & Hi-Fi   /   Hi-Fi & Hi-End Components   /   DACs

Comparison S.M.S.L M300 vs ESI Dr.DAC Prime

Add to comparison
S.M.S.L M300
ESI Dr.DAC Prime
S.M.S.L M300ESI Dr.DAC Prime
Compare prices 2
from $528.58 up to $672.00
Outdated Product
TOP sellers
TypeDACDAC with amplifier
DACAKM AK4497EQBurr-Brown PCM1796
Number of channels2 шт2 шт
Specs
DAC sampling frequency192 kHz192 kHz
DAC bit depth24 bit24 bit
Frequency range20 – 20000 Hz
Signal to noise ratio116 dB123 dB
Dynamic range123 dB
Coef. harmonic distortion0.00015 %0.0015 %
ADC
ADCAKM AK5386
Bit depth24 bit24 bit
Sampling frequency192 kHz192 kHz
Dynamic range120 dB
Signal to noise ratio116 dB110 dB
Features
BluetoothBluetooth v 5.0
Codec support
aptX
 
Functions
 
level adjustment
More features
 
 
ASIO
Mac
Connectors
Inputs
RCA
 
RCA
coaxial S/P-DIF
Outputs
 
XLR
 
RCA
 
coaxial S/P-DIF
General
Display
Power supplymains poweredmains powered
External power supply
Power consumption3 W
Dimensions (WxDxH)165x73x70 mm150x104x38 mm
Weight500 g
Added to E-Catalogoctober 2020july 2016

Type

- DAC. Actually, digital-to-analog converters in the original sense of the word are devices designed to convert digital audio transmitted via an optical, coaxial or USB interface into an analog line-level audio signal, usually in stereo format. Sometimes switching of a digital signal may also be provided (output unchanged to one or another digital output), rarely also reverse, analog-to-digital conversion and/or sound processing using built-in filters and regulators.

DAC with amplifier. Digital-to-analog converters (see corresponding paragraph), complemented by a built-in headphone amplifier and headphone output. The use of this feature can vary: some devices use the “ears” to control the sound coming to the DAC outputs, while others are actually high-end compact headphone amplifiers that connect to the digital output of a PC, game console or other similar device.

DAC

Model of the digital-to-analogue converter installed in the device.

DAC in this case means the “heart” of the device, the main circuit that directly provides the conversion of digital audio to analogue. The name of the DAC model is given mainly for advertising purposes — as an illustration of the fact that high-quality components are used in the device. In addition, knowing the model, you can find detailed information about a particular DAC; although in fact such a need does not arise often, it may still arise in some specific cases.

Frequency range

The audio frequency range supported by the device. Most often, we are talking about the frequency range that the device can output in an analogue audio signal at the output.

In general, the wider the frequency range — the fuller the sound, the lower the likelihood that the transducer will “cut off” the upper or lower frequencies. However, note that the human ear is able to hear sounds at frequencies from 16 to 22,000 Hz, and the upper limit decreases with age. So from a practical point of view, it does not make sense to provide a wider range in audio technology. And the impressive numbers found in high-end devices (for example, 1 – 50,000 Hz) are more of a "side effect" of advanced electronic circuits and are given in the characteristics mainly for the purpose of advertising. Also recall that the overall sound quality is affected by many other factors, in addition to the frequency range.

Signal to noise ratio

The signal-to-noise ratio provided by the converter.

This parameter describes the ratio of the volume of the pure sound produced by the device to the volume of its own noise (which is inevitably created by any electronic device). Thus, the higher the signal-to-noise ratio, the clearer the sound, the less the DAC's own noise affects the audio signal. Indicators up to 80 dB can be considered acceptable, up to 100 dB — not bad, 100 – 120 dB — good, more than 120 dB — excellent. However, it is worth remembering that the overall sound quality is affected not only by this parameter, but also by many others.

Note that the signal-to-noise ratio is often associated with such a characteristic as the dynamic range (see above). They are similar in general meaning, both describe the difference between an extraneous background and a useful signal. However, the noise level in the calculations is taken differently: for the signal-to-noise ratio, the background of the converter “at idle” is taken into account, and for the dynamic range, the noise that occurs when a low-level signal is output. This is the reason for the difference in numbers.

Dynamic range

The dynamic range of a transducer is defined as the ratio between the maximum signal level it is capable of delivering and the level of its own noise when a low amplitude signal is applied. Quite simply, this parameter can be described as the difference between the quietest and loudest sound that the device can produce.

The wider the dynamic range, the more advanced the DAC is considered, the better sound it can produce, all other things being equal. The minimum value for modern devices is about 90 dB, in top models this figure can reach 140 dB.

Also note that this parameter is similar in its meaning to the signal-to-noise ratio, however, these characteristics are measured in different ways; see below for more on this.

Coef. harmonic distortion

The coefficient of harmonic distortion produced by the converter during operation.

The lower this indicator, the clearer the sound produced by the device is, the less distortion is introduced into the audio signal. It is impossible to completely avoid such distortions, but it is possible to reduce them to a level that is not perceived by a person. It is believed that the human ear does not hear harmonics, the level of which is 0.5% and below. However, in high-end audio applications, distortion rates can be much lower — 0.005%, 0.001% or even less. This makes quite a practical sense: the distortions from the individual components of the system are summed up, and the lower the harmonic coefficient of each component, the less distortion there will be in the audible sound as a result.

ADC

Model of the analogue-to-digital converter installed in the device.

Only audio interfaces are equipped with this converter (see "Type"), it provides the conversion of analogue sound into a digital signal — for example, for recording using a computer. The name of the ADC model is given mainly for advertising purposes — as an illustration of the fact that high-quality components are used in the device. In addition, knowing the model, you can find detailed information about a particular ADC; although in fact such a need does not arise often, it may still arise in some specific cases.

Dynamic range

The dynamic range of the analogue-to-digital converter installed in the device.

In this case, the dynamic range is the ratio between the minimum and maximum input signal level that the device can perceive. The higher this indicator, the more efficiently the ADC works, the more fully it perceives the audio signal supplied to the input. It is desirable that this range is not narrower than the dynamic range of the analogue signal source — otherwise the converter will either work with overload or will muffle quiet fragments in the incoming signal.

Signal to noise ratio

The signal-to-noise ratio provided by the analogue-to-digital converter installed in the device.

This parameter describes the relationship between the level of the line level audio signal input to the transducer and the level of the device's inherent noise (which cannot be avoided in any electronic circuit). The higher this ratio, the “cleaner” the converter works, the less its own noise it introduces into the encoded digital signal. Indicators up to 80 dB can be considered acceptable, up to 100 dB — not bad, 100 – 120 dB — good, more than 120 dB — excellent.