Type
— Receiver. The key feature of the receivers, which distinguishes them from the players (see the relevant paragraph), is the presence of a built-in power amplifier that allows you to connect passive acoustics to the device. The design may provide other connection options — preamplifier output, digital audio jacks, etc.; moreover, the set of outputs in receivers is often more extensive than in the players. However, the main feature is precisely the compatibility with passive acoustics.
—
Player. Devices for playing audio from various sources — from an external device that broadcasts an audio signal, from a USB drive, from files on a built-in storage device, etc. The only exception in this regard is content from local networks and the Internet: devices with such capabilities are usually referred to as a separate category —
network players(see below). The fundamental difference between the players and the receivers described above is the absence of a power amplifier. Thus, passive acoustics can only be connected to such devices through additional equipment.
— Network player. A variation of the players described above, capable of playing audio from network resources — streaming services (see below), computers and servers on the local network, etc. The specific set of network functions may be different, but they are necessarily available in one form or another. Also, many of these devices a
...re capable of working with non-network sources, such as external audio devices or flash drives; however, such functionality may not exist. All such nuances in each case should be clarified separately.Frequency range
The range of audio frequencies that the audio receiver can handle. The wider this range, the more complete the overall picture of the sound, the less likely it is that too high or low frequencies will be “cut off” by the output amplifier. However, note that the range of sound audible to a person is on average from 16 Hz to 20 kHz; There are some deviations from this norm, but they are small. At the same time, modern Hi-Fi and Hi-End technology can have a much wider range — most often it is a kind of "side effect" of high-end circuits. Some manufacturers may use this property for promotional purposes, but it does not carry practical value in itself.
Note that even within the audible range it does not always make sense to chase the maximum coverage. It is worth, for example, to take into account that the actually audible sound cannot be better than the speakers are capable of giving out; therefore, for a speaker system with a lower threshold of, say, 70 Hz, there is no need to specifically look for a receiver with this figure of 16 Hz. Also, do not forget that a wide frequency range in itself does not absolutely guarantee high sound quality — it is associated with a huge number of other factors.
Power per channel (8Ω)
The nominal sound power output by the audio receiver per channel when operating with a load having a dynamic resistance (impedance) of 8 ohms. In our catalog, this parameter is indicated for the mode when both channels of the receiver work under load; when working on one channel, the rated power may be slightly higher, but this mode cannot be called standard.
Rated power can be simply described as the highest average output signal power at which the amplifier is able to operate stably for a long time (at least an hour) without negative consequences. These are average figures, because in fact, an audio signal is, by definition, unstable, and individual jumps in its level can significantly exceed the average value. However, the key parameter is still the nominal (average) power — it is on it that the overall sound volume directly depends.
This indicator also determines which speakers can be connected to the device: their rated power should not be lower than that of the receiver.
According to the laws of electrodynamics, with different dynamic load resistance, the output power of the amplifier will also be different. In modern speakers, values of 8, 6, 4 and 2 ohms are standard; the latter option, however, is rare, therefore, in audio receivers, the power for it, usually, is not indicated at all. As for the specific values for 8 ohms, the indicator
up to 50 W is considered relatively low,
50 – 100 W is average, and with
more than 100 W we can talk about high power.
Permissible speaker impedance (Ω)
The lowest speaker impedance that the audio receiver can handle normally.
The nominal impedance of the speakers, also referred to as the term "impedance", is one of the key parameters in the selection of audio system components: for normal operation, it is necessary that the speaker impedance match the characteristics of the amplifier. If the speaker impedance is greater, the sound volume will decrease significantly, if it is less, distortion will appear in it, and in the worst case, even overloads and breakdowns are possible. Therefore, in the characteristics of receivers, it is usually the minimum resistance that is indicated — after all, connecting a load of too low impedance is fraught with more serious consequences than too high.
Signal to noise ratio (RCA)
Signal-to-noise ratio when operating the audio receiver through the RCA line input (see below).
Any signal-to-noise ratio describes the ratio of the level of pure sound produced by the device to the level of extraneous noise that occurs during its operation. This parameter is the main indicator of the overall sound quality — and very clear, because. its measurement takes into account almost all the noise that affects the sound in normal operating conditions. A level
of up to 90 dB in modern receivers can be considered acceptable,
90 – 100 dB is not bad, and for advanced audiophile-class devices, a signal-to-noise ratio
of 100 dB or more is considered mandatory.
Signal to noise ratio (Phono)
The signal-to-noise ratio when the audio receiver is connected to the Phono input. This input is for connecting turntables; see "Inputs" for more details. The value of this parameter is described in detail in the "Signal-to-noise ratio (RCA)" section.
Audio DAC sample rate
The sampling rate of the digital-to-analogue audio signal converter provided in the design of the audio receiver.
A digital-to-analogue converter (DAC) is an indispensable element of any system designed to reproduce digital sound. The DAC is an electronic module that translates sound information into pulses that are sent to the speakers. The technical features of such a conversion are such that the higher the sampling rate, the better the signal at the output of the DAC, the less it is distorted during conversion. The most popular option in receivers today is 192 kHz — it corresponds to a very high sound quality (DVD-Audio) and at the same time avoids unnecessary increase in the cost of devices.
Audio formats support
Audio file formats that the receiver is capable of working with. Among those, there may be lossy compressed (MP3, WMA, etc.), lossless compressed
Lossless(FLAC, APE, etc.) and
Uncompressed uncompressed formats (DSD, DXD, etc.).
In general, compression is used to reduce the volume of audio files. Lossy compression (the most common option) cuts off some of the audio frequencies (mainly those that are poorly perceived by the ear), making such files take up the least amount of space. Lossless compression preserves all original frequencies; this format is preferred by many lovers of high-quality sound, however, such files take up a lot of space, and the difference between normal compression and lossless compression becomes clearly noticeable only on high-quality equipment. Uncompressed formats, in turn, are intended primarily for professional audio work; their full reproduction requires Hi-End audio equipment, and the volumes of such materials are very large. However, these standards are quite popular among sophisticated audiophiles.
Separately, it is worth touching on
the uncompressed DSD format. This standard and its direct derivatives DSF and DFF use coding using the so-called pulse density modulation. It is considered more advanced than traditional pulse-frequency modulation, and allows you to achieve more accurate sound, a higher signal-to-noise ratio
...and less interference with a relatively simple element base.Adjustments
—
Bass adjustment. The presence in the audio receiver of a separate bass level control, in other words, bass volume. The ratio of low and high frequencies largely determines the overall picture of the sound; the optimal options for this ratio for different cases will be different, and they depend on a number of factors — from the type of audio being played to the personal tastes of the listener. Anyway, the bass control provides an additional opportunity to fine-tune the sound of the entire system. It is often combined with a treble control (see below); in fact, this combination is the simplest version of the equalizer.
—
Treble adjustment. The presence in the receiver of a separate volume control for high frequencies. The meaning of this function is completely similar to the bass control described above, only it works with a different frequency band.
—
Balance adjustment. The presence in the audio receiver of the balance between the channels. This setting is used in stereo sound: by changing the position of the knob, you can increase the volume for one channel and decrease it for another. Due to this, the conditional centre of the perceived sound shifts towards the speaker that sounds louder. This feature can be very useful for correcting the sound stage — for example, if the speakers have different sensitivity, badly placed, or the signal itself is n
...ot properly balanced. At the same time, the balance controller introduces additional elements into the design, which increases the likelihood of interference. And therefore, in top-class models, it may not be provided at all.
— Loudness. The presence of a loudness system in the audio receiver. This function is used to further adjust the tone of the sound when the sound volume is low. Its necessity is connected with the fact that the human ear perceives a quiet sound differently than a loud one; because of this, even high-quality sound at low volume will seem “blurry”, not clear enough. Loudness corrects this by boosting certain frequencies. Usually this mode is enabled by the user at will.