USA
Catalog   /   Camping & Fishing   /   RC Models   /   Drones

Comparison DJI Mini 3 Pro RC-N1 vs Autel Evo Nano

Add to comparison
DJI Mini 3 Pro RC-N1
Autel Evo Nano
DJI Mini 3 Pro RC-N1Autel Evo Nano
Compare prices 2
from $659.00 
Outdated Product
TOP sellers
Main
Flight range and video broadcasting up to 10 km (in FCC mode). Possibility of uploading captured video via Wi-Fi and quick editing in the application. Panorama shooting modes. Filming in 4K 60 fps. Compact and lightweight.
The maximum flight distance is 16.8 km. Ultrasonic altimeter. The maximum video bitrate is 100 Mbit/s. Wi-Fi transfer speed is 20 MB/s. Drone application – Autel Sky. Digital zoom 16x. It differs from the Plus version in the camera.
Flight specs
Range of flight18 km16.8 km
Maximum flight time34 min28 min
Horizontal speed57 km/h
47 km/h /sport mode/
Ascent / descent speed18 km/h18 km/h
Wind impedance11 m/s10 m/s
Camera
Camera typebuilt-inbuilt-in
Matrix size1/1.3"1/2"
Aperturef/1.7f/1.9
Number of megapixels48 MP48 MP
Photo resolution8064×6048 px8000x6000 px
Full HD filming (1080p)1920x1080 px 120 fps1920x1080 px 60 fps
Quad HD filming2720x1530 px 60 fps2720x1530 px 30 fps
Ultra HD (4K)3840x2160 px 60 fps3840x2160 px 30 fps
Viewing angles82.1°84
Time lapse
Mechanical stabilizer suspension
Camera with control
Live video streaming
Memory card slot
 /microSD up to 512 GB/
 /up to 256 GB/
Flight modes and sensors
Flight modes
return "home"
Follow me (tracking)
Dronie (distance)
Rocket (distance up)
Orbit mode (flying in a circle)
Helix (spiral flight)
flight plan without GPS (Waypoints)
return "home"
Follow me (tracking)
Dronie (distance)
Rocket (distance up)
Orbit mode (flying in a circle)
 
 
Sensors
GPS module /GLONASS, Galileo/
heights
optic
gyroscope
GPS module /GLONASS, Galileo/
heights
optic
gyroscope
Obstacle sensors
bottom
front
 
bottom
front
back
Control and transmitter
Controlremote control onlyremote control and smartphone
Range
8000 m /6000 m - CE (Europe), 12000 m - FCC (USA)/
10000 m
Control frequency2.4 and 5.8 GHz2.4 and 5.8 GHz
Video transmission frequency2.4 and 5.8 GHz (Wi-Fi)2.4 and 5.8 GHz (Wi-Fi)
Smartphone mount
Remote control power sourcebattery
battery /3930 mAh/
Motor and chassis
Motor typebrushless
Number of screws4 pcs4 pcs
Foldable design
Battery
Battery capacity
2.45 Ah /Li-Ion/
2.25 Ah
Voltage7.38 V7.7 V
Battery model2S2S
Batteries in the set1 pcs1 pcs
USB charging
 /up to 30 W/
General
Body backlight
Materialplasticplastic
Dimensions245х171х62 mm325x260x55 mm
Dimensions (folded)145х90х62 mm142x94x55 mm
Weight249 g249 g
Color
Added to E-Catalogmay 2022february 2022

Range of flight

The distance that a quadcopter can travel in the air on one full battery charge. Simply put, this is the drone's range in kilometers. Note that smaller, lighter drones tend to have a more limited flight range compared to larger, more powerful models. In the latter, it can reach 30 km or more. Also, the maximum flight distance is often influenced by weather factors and the load carried by the copter.

Maximum flight time

Maximum flight time of a quadcopter on one full battery charge. This indicator is quite approximate, since it is most often indicated for ideal conditions - in real use, the flight time may be less than stated. However, by this indicator it is quite possible to evaluate the general capabilities of the copter and compare it with other models - a longer declared flight time in practice usually means higher autonomy.

Note that for modern copters, a flight time of 20 minutes or more is considered a good indicator, and in the most “long-lasting” models it can exceed 40 minutes.

Horizontal speed

The highest speed that a quadcopter can achieve in horizontal flight. It is worth considering that in most cases this parameter is indicated for optimal operating conditions: a fully charged battery, low air temperature, minimum weight, etc. However, it is quite possible to rely on it both when choosing and when comparing different models of copters with each other.

Note that quadcopters were originally designed as stable and maneuverable aerial platforms, and not as high-speed vehicles. Therefore, you should specifically look for a fast quadcopter only in cases where the ability to quickly move from place to place is critical (for example, when the device is supposed to be used for video recording of fast-moving objects over large areas).

Wind impedance

The ability of a quadcopter to maintain and maintain stable flight parameters in windy weather. In this column, it is customary to indicate the wind force in meters per second, which ensures trouble-free takeoff and landing of the drone within the permissible wind speed. Directly in flight, copters can overcome the resistance of even faster winds. But takeoffs and landings with wind strength above the designated level are fraught with unpredictable movements of the drone, loss of control and an increased risk of emergency situations.

Matrix size

The physical size of the photosensitive element of a camera. Measured diagonally, often indicated in fractions of an inch — for example, 1/3.2" or 1/2.3" (respectively, the second matrix will be larger than the first). Note that in such designations it is not the “ordinary” inch (2.54 cm) that is used, but the so-called "Vidiconovsky", which is less than a third and is about 17 mm. This is partly a tribute to the tradition that comes from television tubes — "vidicons" (the forerunners of modern matrices), partly — a marketing ploy that gives buyers the impression that the matrices are larger than they really are.

Anyway, for the same resolution (number of megapixels), a larger matrix means a larger size for each individual pixel; accordingly, on large matrices, more light enters each pixel, which means that such matrices have higher photosensitivity and lower noise levels, especially when shooting in low light conditions. On the other hand, increasing the diagonal of the sensor inevitably leads to an increase in its cost.

Aperture

Aperture - a characteristic that determines how much the camera lens attenuates the light flux passing through it. It depends on two main characteristics - the diameter of the active aperture of the lens and the focal length - and in the classical form is written as the ratio of the first to the second, while the diameter of the effective aperture is taken as a unit: for example, 1 / 2.8. Often, when recording the characteristics of a lens, the unit is generally omitted, such a record looks, for example, like this: f / 1.8. At the same time, the larger the number in the denominator, the smaller the aperture value: f / 4.0 lenses will produce a darker image than models with f / 1.4 aperture.

Photo resolution

The maximum resolution of photos that the standard quadcopter camera can take. This parameter is directly related to the resolution of the matrix (see above): usually, the maximum resolution of a photo corresponds to the full resolution of the matrix. For example, for pictures of 4000x3000 pixels, a sensor of 4000 * 3000=12 megapixels is provided.

Theoretically, a higher resolution of photography allows you to achieve highly detailed photographs, with good visibility of fine details. However, as in the case of the overall resolution of the matrix, high resolution does not guarantee the same overall quality, and you should focus not only on this parameter, but also on the price category of the quadcopter and its camera.

Also note that the high resolution of the camera affects the volume of the materials being shot, for their storage and transmission, more voluminous drives and “thick” communication channels are required.

Full HD filming (1080p)

The maximum resolution and frame rate supported by the aircraft camera when shooting in Full HD (1080p).

The traditional resolution of such a video is 1920x1080; this is what is most often used in drones, although occasionally there are more specific options — for example, 1280x1080. In general, this is far from the most advanced, but more than a decent high-definition video standard, such an image gives sufficient detail for most cases and looks good even on a large TV screen — 32 "and more. At the same time, achieve a high frame rate in Full HD It is relatively simple and takes up less space than higher resolution content, so Full HD shooting can be done even on aircraft that support more advanced video formats like 4K.

As for the actual frame rate, the higher it is, the smoother the video turns out, the less motion is blurred in the frame. On the other hand, the shooting speed directly affects the requirements for the power of the hardware and the volume of the finished files. In general, values up to 24 fps can be called minimal, from 24 to 30 fps — medium, from 30 to 60 fps — high, and speeds over 60 fps are used mainly for slow motion Full HD.

Quad HD filming

The maximum resolution and frame rate supported by the aircraft camera (built-in or bundled) when shooting in Quad HD.

This standard is intermediate between Full HD (see above) and UltraHD 4K (see below); in cameras of modern drones, the Quad HD frame size can be from 2560 to 2720 pixels horizontally and from 1440 to 1530 pixels vertically. In some situations, such a video turns out to be the best option: it gives better detail than Full HD, while it does not require such powerful “hardware” and capacious drives as 4K.

As for the actual frame rate, the higher it is, the smoother the video turns out, the less motion is blurred in the frame. On the other hand, the shooting speed directly affects the requirements for the power of the hardware and the volume of the finished files. In general, values up to 24 fps can be called minimal, from 24 to 30 fps — medium, from 30 to 60 fps — high. Speeds of more than 60 fps are mainly used for shooting slow-motion video, however, for a number of reasons, such a possibility is rarely provided for in the QuadHD standard: relatively simple devices would require too powerful and expensive hardware for this, and in advanced copters, where the cost of electronics not particularly important, manufacturers prefer to use slow motion at higher resolutions.
DJI Mini 3 Pro RC-N1 often compared
Autel Evo Nano often compared