Dark mode
USA
Catalog   /   Computing   /   Components   /   Drive Cases & Docks

Comparison Maiwo K3082 vs Maiwo K3502-U2S

Add to comparison
Maiwo K3082
Maiwo K3502-U2S
Maiwo K3082Maiwo K3502-U2S
Compare prices 1Outdated Product
TOP sellers
Typedocking stationdocking station
Drive form factorSSD or HDD 2.5"/3.5"HDD 3.5"
Drive interfaceSATA 3SATA 3
ConnectivityUSB 3.2 gen1USB 2.0
Materialplastic/rubberplastic/rubber
Storage slots2
Power sourcepSU
Size153x112x62 mm
Color
Added to E-Catalogjuly 2022april 2020

Drive form factor

The form factor of the drive that the pocket is designed to hold.

Such accessories are made for standard form factors of internal drives: 3.5 ", 2.5"(often — for both at once), as well as M.2 SSD. Here are the features of each of these options:

— HDD 3.5 ". 3.5" is the traditional form factor of internal drives for full-size desktop PCs. Accordingly, internal pockets for this form factor are used exclusively in PCs or servers, they are too bulky for laptops; moreover, most of these pockets are a chassis — "sled" (see "Purpose"). External solutions turn out to be more bulky than models under 2.5", however, due to the absence of strict restrictions on the size, capacious drives for such pockets are much cheaper than miniature analogues of the same capacity. Also note that most 3.5-inch drives are just traditional hard drives (or hybrid SSHD devices), SSD modules in this form factor are practically not produced.

SSD or HDD 2.5". Therefore, the internal pockets of this form factor are intended primarily for laptops; a classic version of such an accessory is an adapter for installing a drive in an optical drive slot. In PC models, this option has not received much distribution — modern desktops usually have not only 3.5-inch, but also 2.5-inch drive bays; and for a number of reasons, it is more convenient to use 3.5" solutions as quick-release "...sleds" (see above). But for servers, internal pockets of this form factor are available — for several slots; they usually also represent a "sled" chassis. What As for external models, 2.5" pockets are noticeably smaller than 3.5" counterparts, however, drives for them are more expensive per gigabyte of capacity (especially with large volumes).

— SSD or HDD 2.5"/3.5". Models designed for two form factors at once. The meaning of this marking depends on the particular type of pocket. So, in external models and docking stations (see "Type"), it usually means the ability to install a drive of any of the two form factors in your pocket, to choose from. Usually, bays or slots in such models are initially designed for 3.5", and special plugs are used to fix 2.5" drives in such slots (note that there may be fewer such plugs in docks than sockets). A similar design is used in internal models for servers, as well as in PC chassis that look like a "sled" (see "Intended use"). However, in PC models there is another option — adapters for accommodating 2.5" HDD / SSD in 3.5" form factor slots ; such accessories are also included in this category.

— SSD M.2. Form factor designed specifically for miniature internal components, including solid state drives. Dimensions of M.2 peripherals are from 12 to 30 mm wide and from 16 to 110 mm in length, such components are connected through the connector of the same name. External pockets of this form factor are compact in size. In turn, internal models are most often laptop solutions for installing an SSD in an optical drive slot. However, there is also a rather specific option — PC accessories that allow you to connect M.2 drives to a PCI-E slot (like a separate sound card or another expansion card).
Note that the connection via M.2 can be carried out both on the basis of PCI-E and on the basis of SATA; for more details, see "Drive interface", here we note that the current moment and compatibility with a specific drive should be specified separately.

Connectivity

The method of connecting a pocket with an installed drive to a computer, provided for in the design.

Note that this parameter is specified only in cases where the connection interface differs from the drive interface (see above). A similar feature is typical for all external models and docking stations (see "Type"): nowadays they most often use USB 3.2 gen1, less often — USB 2.0 or USB-C of one version or another (see below). In internal solutions, the drive connector rarely differs from the pocket connector, although there are exceptions.

It is also worth mentioning that in external models, the connection method is usually determined by the type of bundled cable; moreover, such a cable is often made removable, with the possibility of replacing it with a “cord” with a different type of plug.

As for specific connection methods, here are their main features:

— USB 2.0. USB is used to connect external peripherals, including pockets; this is the most popular modern interface of this purpose. And version 2.0 is the oldest USB standard in use today. The possibilities of such a connection are very limited — in particular, the power supply through the connector is 2.5 W, and the maximum data transfer rate does not exceed 480 Mbps. This is noticeably slower than even SATA 2 (3 Gbps), not to mention SATA 3 (6Gb/s); so in general this stan...dard is considered obsolete, and in pockets with this type of connection, the overall speed is limited just by the capabilities of USB 2.0. However, maintaining this interface is inexpensive; for simple tasks that are not associated with large volumes of information, it often turns out to be quite enough; in addition, USB 2.0 devices are fully compatible with newer USB ports. So nowadays you can still find pockets with this type of connection — these are basically the simplest and most inexpensive models.

— USB 3.2 gen1. Full size USB connector (not USB-C) compliant with version 3.2 gen1. This version (formerly known as USB 3.1 gen1 and USB 3.0) is the direct successor to USB 2.0, delivering up to 10x faster data transfer rates—up to 4.8Gbps—and more power. The mentioned speed is almost one-on-one with the capabilities of the popular SATA 3 internal interface; therefore, pockets with this type of connection are extremely common nowadays.

— USB-C 3.2 gen1. Connecting to a USB-C connector that complies with version 3.2 gen1. In terms of capabilities, this method is identical to the “normal” USB 3.2 gen1 described above, the difference lies only in the type of connector. USB-C is a relatively new standard used in both fixed and portable electronics. This connector is noticeably smaller than the standard USB A (slightly larger than microUSB), while it has a convenient double-sided design. However, specifically in computers and even laptops, USB-C ports are used much less frequently than full-sized USBs, so this option is relatively rare in pockets.

USB C 3.2 gen2. Connecting to a USB-C connector that complies with version 3.2 gen2. See above for more details on USB-C in general. And USB 3.2 gen2 (formerly known as 3.1 gen2 or simply 3.1) is the successor to 3.2 gen1, with even more advanced features: the maximum connection speed in this standard is 10 Gbps. On the other hand, for SATA drives, such speed is unnecessary, support for this version is quite expensive, and USB-C 3.2 gen2 connection ports are still relatively rare. Therefore, this option has not received distribution in pockets either: it is provided only in individual models for M.2 SSD with PCI-E connection, where the speed of the internal interface is already measured in tens of gigabits per second.

— PCI-E. Connect to a standard PCI-E slot on the motherboard. In other words, such pockets are connected to the computer in the same way as video adapters, sound cards, and other expansion cards. This design is used in select internal models for M.2 SSD drives; using such a pocket, you can connect a similar drive to a desktop PC even if the native M.2 ports on the motherboard are busy, unavailable, not suitable for connection (for example, they use the SATA interface, while the drive is made for PCI-E), or absent altogether.
Note that such pockets are usually compatible with M.2 PCI-E SSD modules without problems, but compatibility with M.2 SATA should be specified separately (although such functionality is also found). It is also worth mentioning that PCI-E slots and devices for them can have a different number of lines, and the general rule here is this: the number of lines in a slot on the motherboard must be no less than that of the connected board. However, in pockets with such a connection, usually less than 4 lines are provided, so they can be connected to PCI-E connectors starting from 4x.

— IDE. Outdated interface for connecting internal drives. It is extremely rare in modern pockets — in separate models designed to install modern or HDD / SSD in outdated computers without SATA and other relevant connectors.

Storage slots

The number of separate slots for drives provided in the design of the pocket, in other words, the number of drives for which this model is designed.

In addition to models for one slot, nowadays you can find more capacious solutions — for two drives, or even more. Such "multiplying" is found in three types of devices. The first is large-format pockets for stationary purposes (see above), operating in the format of separate storages for a large amount of data. Such models may support RAID arrays (see above) and other special features. The second type of devices with more than one slot are separate docking stations (see "Type") with similar functionality. The third type is server models (see "Purpose") with an internal installation; they again allow the organization of arrays, but by means of the server itself.

Note that external devices with one slot can be powered from the USB port, but several drives in this case inevitably require a separate PSU (see "Power").

Power source

The type of power provided in the design of the pocket.

This parameter is relevant only for external models (in internal solutions, power is determined solely by the connection interface). The options could be:

USB. Powered by the same USB port used for the main connection. The advantage of this option is obvious: it allows you to do without unnecessary wires and use the pocket regardless of the presence of sockets (which is important, for example, when working with a laptop on the road). At the same time, the power of USB power is generally low, and besides, it directly depends on the version of the connector (see "Connection"). So for pockets with several disks, this option is not suitable in principle. In other cases, you should pay attention to compatibility when connecting to a USB connector of an older version than is supported by the pocket. For example, a model with USB 3.2 gen1 can be physically connected to a USB 2.0 port without any problems, but it may not have enough power for normal operation. However, more modern versions (USB 3.2 gen1 and gen2) practically do not have such compatibility problems.

- Power Supply. Powered by a separate PSU, usually plugged into a power outlet. These pockets are bulkier and less mobile than USB-powered models, they can't work without power outlets nearby, and the extra wire is a bit of a hassle. On the other hand, the power supply is capable of delivering mor...e power than USB, and this power is constant and does not depend on the version of the port to which the drive is connected. So many stationary models use just such a power supply; and for external pockets for two or more drives, this is generally the only available option.
Maiwo K3082 often compared
Maiwo K3502-U2S often compared