USA
Catalog   /   Home & Renovation   /   Electrical Equipment   /   Multimeters

Comparison UNI-T UT18C vs CEM DT-9130

Add to comparison
UNI-T UT18C
CEM DT-9130
UNI-T UT18CCEM DT-9130
Compare prices 1Outdated Product
TOP sellers
Main
Built-in flashlight
Product typevoltage testervoltage tester
Typedigitaldigital
Form factorpenpen
Measurement types
Measurements
voltage
voltage
Specs
Voltage typeconstant / variableconstant / variable
DC voltage minimum8000 mV
DC voltage max.690 V690 V
Measurement accuracy (V⁻)1.5 %
AC voltage minimum8000 mV
AC voltage max.690 V400 V
Display size31x20 mm
Display count1999
Display value3 1/2
Features
Functions
continuity test mode
autoranging
continuity test mode
autoranging
In box
battery
test probes
battery
test probes
General
Display backlight
Built-in flashlight
Fixed probes
Power sourcebatterybattery
Battery type2xAAA2xAAA
Dimensions272x85x31 mm240x78x40 mm
Weight280 g237 g
Added to E-Catalogfebruary 2022november 2019

DC voltage minimum

The upper limit of the lower sub-range in which the device can measure DC voltage (see "Type of voltage").

The operating ranges of modern multimeters and other measuring instruments are usually divided into subranges. This is done for accuracy and convenience when measuring: for example, to assess the quality of AA batteries, you can set the subrange “up to 3 V” — this will give an accuracy of up to tenths, or even hundredths of a volt, unattainable when measuring with a higher threshold. The minimum constant voltage describes exactly the lower subrange, designed to measure the smallest voltage values: for example, if 2000 mV is indicated in this paragraph, this means that the lower subrange covers values \u200b\u200bup to 2000 mV (i.e. up to 2 V).

It is worth choosing according to this indicator taking into account the specifics of the planned application: for example, a device with low rates can be useful for delicate work, such as repairing computers or mobile phones, but for servicing the on-board electrical network of a car, especially high voltage sensitivity is not required.

Measurement accuracy (V⁻)

Measurement accuracy provided by the instrument.

Measurement accuracy for multimeters is usually indicated by the smallest error (in percent) that the device is able to provide when measuring direct current. The smaller the number in this paragraph, the higher the accuracy, respectively. At the same time, we emphasize that it is the smallest error (the highest accuracy) that is usually achieved only in a certain measurement range; in other ranges, the accuracy may be lower. For example, if in the range "1 — 10 V" the device gives a maximum deviation of 0.5%, and in the range "10 — 50 V" — 1%, then 0.5% will be indicated in the characteristics. Nevertheless, according to this indicator, it is quite possible to evaluate and compare modern multimeters. So, a device with a lower claimed error, usually, and in general will be more accurate than a model with a similar performance with a larger error.

Data on measurement accuracy in other ranges and modes can be given in the detailed characteristics of the device. However, in fact, this information is required not so often — only for certain specific tasks, where it is fundamentally necessary to know the possible error.

AC voltage minimum

The upper limit of the lower sub-range in which the device can measure AC voltage (see "Type of voltage").

The operating ranges of modern multimeters and other measuring instruments are usually divided into subranges. This is done for accuracy and convenience in measurements: for example, to test a transformer that should output 6 V, it makes sense to set a subrange with an upper threshold of 10 V. This will ensure accuracy up to tenths of a volt, unattainable when measuring with a higher threshold. The minimum constant voltage describes exactly the lower subrange, designed to measure the smallest voltage values: for example, if 2000 mV is indicated in this paragraph, this means that the lower subrange covers values \u200b\u200bup to 2000 mV (i.e. up to 2 V).

If the device is purchased for measurements in stationary networks — household at 230 V or industrial at 400 V — you can ignore this parameter: usually, the minimum subranges are not used. But to work with power supplies, step-down transformers and various “thin” electronics served by low voltage alternating current, it makes sense to choose a model with a lower minimum voltage. This is connected not only with the measurement range: a low threshold, usually, indicates a good measurement accuracy at low voltages in general.

AC voltage max.

The largest alternating voltage (see “Type of voltage”) that can be effectively measured using this model. This parameter is important not only for measurements as such, but also for safe handling of the device: measuring too high voltage will, at best, trigger emergency protection (and it is possible that after that you will have to look for a new fuse to replace the burned one), at worst — to equipment failure or even fire. In addition, for safe measurements, a voltage margin is highly desirable — this is due both to the characteristics of the alternating current and to the possibility of various emergency situations in the network, primarily voltage surges. For example, for 230 V networks, it is desirable to have a device for at least 250 V, and preferably 300 – 310 V; detailed recommendations for other cases can be found in special sources.

Note that most multimeters and other similar devices have several measurement ranges, with different maximum thresholds. So, for a safe measurement of voltage close to the maximum, you need to set the appropriate mode in the settings.

Display count

The highest number that the DMM display can display (see "Type").

This indicator determines the range in which measurements can be taken without changing the settings. So, if the maximum number is 1999, then the measurement can be made in the range from 0 to 1999 of the selected units of measure — for example, from 0 to 1999 V if volts are selected, from 9 to 1999 mA (1.999 A) if milliamps are selected, etc. At the same time, 1999 and less for modern measuring instruments are considered a rather modest indicator, from 2000 to 3999 — average, 4000 – 9999 — not bad, and in the most advanced models this number exceeds 10000.

Note that the maximum displayed number is directly related to the display capacity — see below.

Display value

The digit capacity of the display installed in the digital instrument (see "Type").

Bit depth is the number of characters that can be displayed on the screen at the same time. The maximum displayed number directly depends on it (see above): for example, if the digit capacity is 4, then the device has a display for 4 full digits and is able to display a number up to 9999 inclusive. However, there are also more specific markings — with a fraction, for example, 3 1/2 or 4 3/4. This means that the largest (left) digit in this model is incomplete and the maximum digit that it can display is less than 9. Specifically, such marking is deciphered as follows: an integer means the number of full digits, the numerator of a fraction is the maximum number displayed in an incomplete digit, the denominator is the total number of values supported by an incomplete digit. Considering the above examples, 3 1/2 means a four-digit display with the maximum number in 1999: three full digits with a maximum value of 9, plus one partial digit with a maximum value of 1 and two options (1 and 0). Similarly, 4 3/4 corresponds to the maximum number 39999, with 4 options for values in the partial digit (0, 1, 2, 3).

Display backlight

The presence of a backlight in the display of the device.

This function allows you to read the display regardless of lighting conditions — at dusk and even in total darkness. If there is not enough external light, just turn on the backlight, and the readings will be perfectly visible.
UNI-T UT18C often compared