Dark mode
USA
Catalog   /   Tools & Gardening   /   Measuring tools   /   Laser Measuring Tools

Comparison Hilti PM 2-LG 2206613 vs DeWALT DW088CG

Add to comparison
Hilti PM 2-LG 2206613
DeWALT DW088CG
Hilti PM 2-LG 2206613DeWALT DW088CG
Outdated ProductCompare prices 1
TOP sellers
Typelaser levellaser level
Specs
Measurement range20 m10 m
Measurement range (with receiver)50 m50 m
Accuracy0.3 mm/m0.3 mm/m
Self-leveling angle4 °4 °
Leveling time3 с
Operating temperature-10 – 50 °C-10 – 45 °C
Tripod thread1/4"1/4"
Auto power off
Auto power off60 min
Laser characteristics
Diode emission530 nm530 nm
Laser colourgreengreen
Laser class22
Vertical projections11
Beam angle (vertical)135 °
Horizontal projections11
Beam angle (horizontal)180 °
Features
Compensator locking
General
IP protection rating5454
Power source4хАА3xAA
Operating time14 h40 h
In box
 
case / pouch
non chargeable batteries
holder
case / pouch
non chargeable batteries
Dimensions65x107x95 mm
Weight520 g750 g
Added to E-Catalogfebruary 2021december 2018

Measurement range

The range at which the device remains fully operational without the use of additional receivers (see below); in other words, the radius of its action without auxiliary devices.

In some models, a range may be specified that shows the minimum ( 3 cm, 5 cm) and maximum measurement ranges. But in most cases, only the maximum value is indicated.

The specific meaning of this parameter is determined by the type of instrument (see above). So, for optical levels, the measurement range is the greatest distance at which the operator can normally see the divisions of a standard leveling staff. For laser levels, this parameter determines the distance from the device to the surface on which the mark is projected, at which this projection will be easily visible to the naked eye; and in rangefinders we are talking about the greatest distance that can be measured. Typically, the measurement range is indicated for ideal conditions - in particular, in the absence of impurities in the air; in practice, it may be less due to dust, fog, or vice versa, bright sunlight "overlapping" the mark. At the same time, tools of the same type can be compared according to this characteristic.

Note that it is worth choosing a device according to the range of action, taking into account the features of the tasks that are planned to be solved with its help: after all, a large measurement range usually significa...ntly affects the dimensions, weight, power consumption and price, but it is far from always required. For example, it hardly makes sense to look for a powerful laser level at 30-40 m if you need a device for finishing work in standard apartments.

Leveling time

Approximate time it takes for the self-levelling mechanism to bring the level to a perfectly level position.

For more information on such a mechanism, see Self-Level Limits. And the actual time of its alignment directly depends on the actual deviation of the device from the horizontal. Therefore, in the characteristics, usually, the maximum alignment time is given — that is, for the situation when in the initial position the device is tilted to the maximum angle along both axes, longitudinal and transverse. Since the levels are far from being installed in this position, in fact the speed of bringing to the horizontal is often higher than the claimed one. Nevertheless, it makes sense to evaluate different models precisely according to the figures stated in the characteristics — they allow you to estimate the maximum amount of time that will have to be spent on alignment after the next movement of the device. As for specific indicators, they can vary from 1.5 – 2 s to 30 s.

Theoretically, the shorter the alignment time, the better, especially if there are large volumes of work ahead with frequent movements from place to place. However, in fact, when comparing different models, it is worth considering other points. First, we reiterate that the rate of leveling is highly dependent on the leveling limits; after all, the greater the deviation angles, the more time it usually takes for the mechanism to return the level to the horizontal. So, to directly compare w...ith each other in terms of the speed of self-leveling, it is mainly those devices in which the permissible deviation angles are the same or differ slightly. Secondly, when choosing, it is worth considering the specifics of the proposed work. So, if the device is to be used frequently on very uneven surfaces, then, for example, a model with a leveling time of 20 s and self-levelling limits of 6 ° will be a more reasonable choice than a device with a time of 5 s and limits of 2 °, since in In the second case, a lot of time will be spent on the initial (manual) installation of the device. And for more or less even horizontal planes, on the contrary, a faster device may be the best option.

Operating temperature

The temperature range at which the device is guaranteed to work for a sufficiently long time without failures, breakdowns and exceeding the measurement error specified in the characteristics. Note that we are talking primarily about the temperature of the device case, and it depends not only on the ambient temperature — for example, a tool left in the sun can overheat even in fairly cool weather.

In general, you should pay attention to this parameter when you are looking for a model for working outdoors, in unheated rooms and other places with conditions that are significantly different from indoor ones; in the first case, it makes sense to also make sure that there is dust and water protection (see "Protection class"). On the other hand, even relatively simple and "myopic" levels / rangefinders usually tolerate both heat and cold quite well.

Auto power off

The ability to automatically turn off the device after a certain time. This function is found in those types of measuring instruments that require power for operation — first of all, we are talking about laser rangefinders, however, this list may also include levels (see "Type"), both laser and optical with additional digital modules . The main purpose of auto-shutdown is to save electricity: after all, almost all such devices have autonomous power sources (see "Power"), the charge of which is not infinite. Forgetting to turn off the device, you may encounter an unpleasant situation: the batteries are dead, but there are no fresh ones at hand; auto-off prevents these situations and generally increases the operating time without changing batteries or recharging the battery. In addition, this feature is also useful from a safety point of view: automatic laser shutdown reduces the likelihood that its beam will accidentally fall into the eyes of someone around (including a forgetful operator).

In some models, auto-shutdown works on the entire electronics, in others it may be possible to turn off the laser first (as the most energy-intensive and unsafe part), and only after a while — all other electronic circuits.

Auto power off

The time after which the device turns off by itself completely if the user does not perform any action.

See above for more information on auto power off; and his time has a double meaning. On the one hand, if this time is short, then the idle time of the device will be minimal, which helps to save energy. On the other hand, too frequent auto-shutdown (with subsequent switching on for work) is also undesirable — it increases the wear of components and reduces the resource, and it is not always convenient for the user. So manufacturers choose the time, taking into account the balance between these moments, as well as the general class and purpose of the device. So, in some rangefinders, this indicator does not even reach a minute, although in most such devices it is in the range from 3 to 8 minutes; and in some professional devices (primarily levels), the auto-off time can be 30 minutes or more (up to 3 hours).

Beam angle (vertical)

The sweep angle in the vertical plane provided by the level emitter. If there are several such radiators (for example, on both sides of the case), this parameter is given for each of them separately.

The sweep angle is, in fact, the coverage angle, that is, the width of the sector captured by the emitter when the line is formed. The wider this angle, the more convenient the device is to use, the lower the likelihood that the device will have to be moved up and down to build a line. On the other hand, a larger sweep angle (at the same range) requires more power — and this, accordingly, affects the cost and power consumption.

Beam angle (horizontal)

The sweep angle in the horizontal plane provided by the level emitter. If there are several emitters, their total coverage angle is indicated here; a typical example of such devices are models for full 360 °, not related to rotation.

Actually, all rotary devices, by definition, provide a coverage of 360 °. Therefore, it is worth paying attention to this parameter in cases where we are talking about more traditional laser levels. And here it is worth considering that a larger coverage angle, on the one hand, can provide additional convenience, on the other hand, it increases the price and power consumption of the device. So when choosing, you should proceed from real needs; detailed recommendations on this subject can be found in special sources.

Compensator locking

Ability to disable the compensator installed in the level. To be more precise, we are talking about the ability to disable the self-leveling system (recall, it is used to automatically bring the device to the horizontal during initial installation).

Blocking the compensator can be useful in two cases. The first is transportation: compensators are rather delicate mechanisms, and when switched on, they do not withstand the shocks and shocks that the device can be subjected to when moving from place to place. The second case is the installation of the device at an angle, when bringing it to the horizontal is simply superfluous.

Power source

The type and number of batteries used in the level/distance meter. All elements of standard sizes (AA, AAA, C, D, PP3) are available in two formats — disposable batteries and rechargeable batteries. This gives the user a choice: either buy relatively inexpensive batteries every time, or invest once in a rechargeable battery with a charger, and then simply charge the battery as needed. Branded batteries are, by definition, made only rechargeable, as are 18650 batteries.

Specific types of power today can be as follows:
— AA. A standard battery, known as a "finger battery". The power of these batteries is average, they can be used both in simple and quite advanced devices. This power supply is convenient due to the fact that AA batteries are very widespread and sold almost everywhere — due to this, finding and replacing them is usually not a problem.
— AAA. A smaller version of the AA element described above — almost identical in shape, but thinner and shorter. Such elements, known as "mini-finger" or "little fingers", have a rather low capacity and power, but are useful for portable devices, where compactness is crucial. They are also quite widespread.
— C. A cylindrical element, in the form of a rather thick "bar...rel" — with a length of 50 mm, the diameter is 26 mm. Due to its higher capacity and power than AA, it is better suited for advanced models with "long-range" lasers, but is less commonly used and generally less common.
— D. The largest and most capacious type of standard batteries found in modern levels and distance meter: thickness and diameter are 62 and 34 mm, respectively. The main area of application for D batteries is powerful professional devices.
— Rechargeable battery. In this case, the tool is powered by an branded battery that does not belong to any standard size. This option is good because such batteries are initially created for a specific model of the level/distance meter and are supplied in the set (and in some models they are made non-removable); in addition, their specifications can significantly exceed those of standard elements of a similar size and weight. On the other hand, such power source is less convenient when the charge runs out at the wrong moment: the only way to remedy the situation is usually to recharge, and it takes quite a long time (whereas standard batteries can be replaced in just a minute).
– 18650. The name of these batteries comes from their dimensions: 18.6x65.2 mm, cylindrical, outwardly they resemble somewhat enlarged AA batteries, but they have an operating voltage of about 3.7 V and a higher capacity. In addition, all 18650 type batteries are by definition not disposable, but rechargeable batteries (lithium-ion type).

— PP3. 9-volt batteries of a spesific rectangular shape, with a pair of contacts on one of the ends. Due to the high operating voltage, they provide high power and actual capacity, so one such battery is usually enough for operation.

— LR44. Miniature batteries of "coin" type, 11.6 mm in diameter and 5.4 mm thick. Usually installed in sets of 3 and are used in compact low-power laser levels, for which small size is more important than power and capacity. Note that specifically the LR44 marking refers to relatively inexpensive alkaline batteries; more expensive and advanced silver-zinc power supplies are referred to as SR44, or 357.

— 23A12V. A rather rare option: cylindrical batteries (length 29 mm, diameter 10 mm) with a nominal voltage of 12 V.
DeWALT DW088CG often compared