USA
Catalog   /   Tools & Gardening   /   Construction Power Tools   /   Laser Measuring Tools

Comparison Intertool MT-3003 vs Intertool MT-3004

Add to comparison
Intertool MT-3003
Intertool MT-3004
Intertool MT-3003Intertool MT-3004
Outdated ProductOutdated Product
TOP sellers
Main
Bubble level for leveling. Ability to operate on battery, batteries or mains
Typelaser levellaser level
Suitable forfor 360° area coverage
Specs
Measurement range10 m10 m
Accuracy0.2 mm/m0.2 mm/m
Self-leveling angle3 °3 °
Operating temperature-10 – 40 °C-10 – 40 °C
Tripod thread5/8"5/8"
Laser characteristics
Diode emission650 nm650 nm
Laser colourredred
Laser class22
Vertical projections14
Horizontal projections11
Beam angle (horizontal)360 °
Features
Compensator locking
Bubble level
General
Power source3xAAAA x3 or battery
Mains powered
In box
tribrach
case / pouch
non-chargeable batteries
 
 
PSU
glasses
tribrach
case / pouch
non-chargeable batteries
battery
charger
 
glasses
Weight1635 g1810 g
Added to E-Catalogmay 2020may 2020

Suitable for

General purpose of the device.

This parameter is indicated for models that have a clear specialization - these are mainly laser levels, including rotary ones. Among such devices, there are the following application options: for the 360° area, only for point projections, for the floor and for pipes. Here are the features of each of these varieties:

— For 360° area coverage. A full circle, 360°, by definition covers all rotary levels (see “Type”). However, such specialization can also occur in “regular” laser models. In such devices, full 360° coverage is achieved in other ways - usually by the presence of several emitters, each of which covers its own sector, or a special prism that scatters the beam from one emitter over a full 360°.

- Point projections only. Levels with this feature do not form marks in the form of lines during operation and “draw” only points. At the same time, in the simplest models there is only one point projection, but devices with several marks (up to 5) are more common. In any case, such devices are intended for relatively simple work where there is no need for marking along lines.

- For the floor. Levels designed for working with floors - screeds, laying coverings, etc. A common feature of such devices is a fairly wide base, which allows, in fact, to place the device di...rectly on the floor. But the specific design and operating features of levels of this type may be different. Thus, devices with a characteristic layout are quite popular - with two vertical projections intersecting at an angle of 90° (some models provide two more projections directed in opposite directions from the main ones). Such a device can be used not only on the floor, but also on walls: if you press its base tightly against a particular surface, it will form two clearly perpendicular lines on it. In the case of floors, this can be convenient, for example, when laying tiles.
Another common type of floor level is devices designed to detect unevenness. To do this, use a line formed on the floor using a vertical projection. During operation, a level placed on the floor and aligned horizontally rotates around a vertical axis, and the line “scans” the floor; when it hits a ledge, it becomes uneven. Note that in the simplest models, such a “scanner” uses only one projection, but there is also a more advanced version - a line created by two projections at once. Such a pointer, when it hits an uneven floor, is divided into two separate lines - this is much more noticeable than the deviation when using a single projection.

- For pipes. A rather rare type of specialized laser levels are devices for laying pipelines. They are used, in particular, in the construction of water supply, sewer and stormwater systems. Pipe levels most often have a characteristic cylindrical shape, with a handle at one end and a point laser emitter at the other. They are installed horizontally on special legs (the kit usually comes with several sets of such legs, varying in height); the design usually has a self-leveling mechanism with quite extensive capabilities; and the necessary measurement accuracy is ensured by a target with special markings. Such devices allow you to at least accurately lay horizontal lines, and many of them also allow you to work with corners.

Vertical projections

The number of vertical projections issued by the laser level during operation.

Most modern levels are designed for a strictly defined position when working; accordingly, the projection is called vertical, carried out from top to bottom relative to the standard position of the device. If there are several such planes, the level can be used for two or even three walls at once — this is useful, for example, for the simultaneous work of several people. At the same time, there are portable devices that can be used in different positions; for them, the main working plane is called vertical, although during operation it can be located both horizontally and at an angle, depending on specific tasks. Also note that the vertical projection can also give a horizontal line — for example, when installing a level on the floor.

Note that the number of projections is calculated not by geometric planes, but by individual laser elements, each of which is responsible for its own “work area”. For example, if the level has two vertical elements located at opposite ends and directed in different directions, they are considered as two projections even if these projections lie in the same plane.

Beam angle (horizontal)

The sweep angle in the horizontal plane provided by the level emitter. If there are several emitters, their total coverage angle is indicated here; a typical example of such devices are models for full 360 °, not related to rotation.

Actually, all rotary devices, by definition, provide a coverage of 360 °. Therefore, it is worth paying attention to this parameter in cases where we are talking about more traditional laser levels. And here it is worth considering that a larger coverage angle, on the one hand, can provide additional convenience, on the other hand, it increases the price and power consumption of the device. So when choosing, you should proceed from real needs; detailed recommendations on this subject can be found in special sources.

Power source

The type and number of batteries used in the level/distance meter. All elements of standard sizes (AA, AAA, C, D, PP3) are available in two formats — disposable batteries and rechargeable batteries. This gives the user a choice: either buy relatively inexpensive batteries every time, or invest once in a rechargeable battery with a charger, and then simply charge the battery as needed. Branded batteries are, by definition, made only rechargeable, as are 18650 batteries.

Specific types of power today can be as follows:
— AA. A standard battery, known as a "finger battery". The power of these batteries is average, they can be used both in simple and quite advanced devices. This power supply is convenient due to the fact that AA batteries are very widespread and sold almost everywhere — due to this, finding and replacing them is usually not a problem.
— AAA. A smaller version of the AA element described above — almost identical in shape, but thinner and shorter. Such elements, known as "mini-finger" or "little fingers", have a rather low capacity and power, but are useful for portable devices, where compactness is crucial. They are also quite widespread.
— C. A cylindrical element, in the form of a rather thick "bar...rel" — with a length of 50 mm, the diameter is 26 mm. Due to its higher capacity and power than AA, it is better suited for advanced models with "long-range" lasers, but is less commonly used and generally less common.
— D. The largest and most capacious type of standard batteries found in modern levels and distance meter: thickness and diameter are 62 and 34 mm, respectively. The main area of application for D batteries is powerful professional devices.
— Rechargeable battery. In this case, the tool is powered by an branded battery that does not belong to any standard size. This option is good because such batteries are initially created for a specific model of the level/distance meter and are supplied in the set (and in some models they are made non-removable); in addition, their specifications can significantly exceed those of standard elements of a similar size and weight. On the other hand, such power source is less convenient when the charge runs out at the wrong moment: the only way to remedy the situation is usually to recharge, and it takes quite a long time (whereas standard batteries can be replaced in just a minute).
– 18650. The name of these batteries comes from their dimensions: 18.6x65.2 mm, cylindrical, outwardly they resemble somewhat enlarged AA batteries, but they have an operating voltage of about 3.7 V and a higher capacity. In addition, all 18650 type batteries are by definition not disposable, but rechargeable batteries (lithium-ion type).

— PP3. 9-volt batteries of a spesific rectangular shape, with a pair of contacts on one of the ends. Due to the high operating voltage, they provide high power and actual capacity, so one such battery is usually enough for operation.

— LR44. Miniature batteries of "coin" type, 11.6 mm in diameter and 5.4 mm thick. Usually installed in sets of 3 and are used in compact low-power laser levels, for which small size is more important than power and capacity. Note that specifically the LR44 marking refers to relatively inexpensive alkaline batteries; more expensive and advanced silver-zinc power supplies are referred to as SR44, or 357.

— 23A12V. A rather rare option: cylindrical batteries (length 29 mm, diameter 10 mm) with a nominal voltage of 12 V.

In box

holder. Devices for fixing the level / range finder on various surfaces. Such a device differs from a tripod primarily in its small size — within a couple of tens of centimeters. On the other hand, most holders allow you to install the device not only on horizontal, but also on vertical surfaces — for example, walls (and some are exclusively wall-mounted). Anyway, this function greatly expands the installation possibilities.

Receiver. laser radiation supplied with the device. This device is usually equipped with laser levels, less often with rangefinders, and it is not required at all for optical instruments. The main purpose of the receiver is situations where the laser mark is not visible to the naked eye — for example, at a long distance or in bright light. More details on the features of its application are described above in the paragraph “Measurement range (with receiver)”.

Tripod. Most modern instruments have a standard size thread and can be used with any suitable tripod. On the other hand, a complete tripod is most often specially designed for a certain model and optimally matches it in terms of general characteristics. In addition, this configuration option relieves you of the need to look for and purchase a suitable tripod yourself.

Case / case. The main function of these devices is to protect...the device from bumps, scratches, dirt, temperature changes and other adverse effects; for this, of course, improvised means can also be used, but specialized protection is usually both more convenient and more reliable. In addition, almost all cases and most covers greatly simplify the transportation of the tool — in particular, due to the fact that they can also be used for complete accessories.

Remote control. Among rangefinders and optical levels, this function is practically not found, because. working with them involves the constant stay of the device in the hands of the operator. But for laser levels that require you to regularly move from the device to the surface to be marked and back, the remote control can be a very useful addition — due to the fact that it minimizes such movements. For example, after marking the "front of work" on the wall according to the projection from the level, you do not have to approach the device to turn it off — just give a command from the remote control. At short distances, the savings in time and effort may not be so obvious, but over large areas, they can become quite noticeable.