Mechanics
Type of action used in digital piano keys.
—
Hammer. A mechanic that mimics the feel of playing a real piano as closely as possible. Hammer action keyboards not only provide velocity and force-dependent sound dynamics, they also provide a distinctive response with each press. These mechanics are complex and expensive, but they are considered the most advanced and suitable for digital pianos, and therefore are used in most models.
—
Active. In the case of digital pianos, the active keyboard can be described as a simplified version of the hammer action described above. The sound produced when pressing such keys also depends on the force and speed of pressing, however, the keys themselves have less rigidity and do not give the full feel of a piano keyboard. On the other hand, such mechanics are cheaper. As a result, it is found mainly in low-cost models, as well as some professional instruments, positioned more like electric organs.
The third type of mechanics — passive — assumes that each time you press a key, the volume will be the same, regardless of the strength and speed of pressing. Such keyboards are not used in digital pianos — they are too primitive and not very functional for this class of instruments; however, models with adjustable sensitivity may provide switching the keyboard to a "passive" format (see below for more details).
Rigidity
Rigidity characterizes the force with which it is necessary to press the keys of a digital piano.
— Weighted. Weighted keyboards have high rigidity; if you are not used to them, they may not seem very comfortable. At the same time, such rigidity is an integral feature of the traditional piano keys. Therefore, all hammer action keyboards (see "Mechanics"), by definition, are made only weighted (and this is the type of mechanics that is typical for most digital pianos). Moreover, most models with simpler active mechanics have this rigidity — to ensure the greatest possible resemblance to traditional pianos.
— Semi-weighted. Keyboards of relatively low rigidity, which do not require such an effort when pressed, as weighted ones, however, are less reliable in response. They are found only in instruments with active mechanics, and even then rarely, mainly among low-cost-level models.
Technically, there is another type of keyboard — unweighted, in which each key, figuratively speaking, "falls through" under the finger, and the effort when pressed is almost imperceptible. However, such keyboards do not allow adequate pressure control, which is critical for more or less professional music performance. This is why digital pianos don't have unweighted keys.
Built-in timbres
The number of built-in sounds provided by the Digital Piano.
Despite the name, digital pianos are extremely rarely designed to imitate the sound of only a piano — the electronic hardware allows them to provide other timbres of sound. In addition, even the piano has its own varieties — for example, among the grand pianos there are 6 main classes, from large concert to miniature. So the built-in sounds can cover different kinds of pianos, as well as other instruments and sound effects.
The abundance and variety of timbres in digital pianos as a whole is not as great as in synthesizers, however, in this category there are very “charged” models, with a hundred timbres or more (in the most multifunctional, this number can exceed 900). However, it is worth specifically looking for a “multi-instrumental” model if you do not intend to be limited to the sound of the piano and would like to have more freedom of choice. It is worth remembering that a specific set of timbres can be different.
If the instrument is bought exclusively as a piano, then here, on the contrary, it is worth paying attention primarily to solutions with a small number of timbres. Such models are not only cheaper than "universals" — they can also sound better (due to the fact that there are few timbres and the manufacturer can carefully approach the sound quality of each built-in "instrument").
Tempo change
The range over which the tempo of the sound played by the instrument can change. It can be either a built-in melody or a part recorded on a sequencer, or an auto accompaniment, a tutorial or a metronome. For more information on all of these features, see the corresponding glossary entries. Here we note that a change in tempo is often required in fact — for example, to speed up an initially "sluggish" accompaniment or slow down a training programme that is difficult to master at the original tempo.
Tempo is traditionally indicated in beats per minute. The classical, "academic" range covers options from 40 bpm ("grave", "very slow") to 208 bpm ("prestissimo", "very fast"), however, in modern digital pianos, the working range of tempos is often significantly wider.
Sequencer (recording)
The presence of a sequencer in the design of a digital piano.
This function allows you not only to play music on the instrument, but also to record it with the possibility of later playback. However, this is at least; in addition to recording the parts of the instrument itself, the
sequencer can provide recording an audio or MIDI signal from the corresponding input, mixing several parts (including recording the music being played over the music being played “on the go”), working with the parameters of individual tracks (volume, tone, timbre), as well as specific functions such as quantization (smoothing uneven tempo). The specific functionality of the sequencer may be different, it's ok to check it before buying. However, anyway, this function can be a good help for the musician; it is especially useful for those who are not limited to the performance of ready-made music and want to compose their own compositions.
Octave shift
The presence of an octave shift function in the digital piano.
This function makes it possible to "shift" the sound by a certain number of octaves up or down — for example, in such a way that the bass register sounds on the keys of the first octave, or vice versa, the first octave "slid" lower, into the bass, and notes of the second sounded in its place or even the third octave.
This feature significantly expands the range of the instrument, allowing you to play notes that were not originally covered by the keyboard. This is especially important for instruments with 61 or 73 keys (see "Number of Keys"), but
octave shifting is not uncommon in full-sized 88-key models — it can be useful when splitting the keyboard (see above), when available for each hand the range is noticeably reduced, and the batch can be very low or very high. However, there are other options for using transfer — for example, so that when playing an updated version of the melody, you do not have to move from the usual octaves.
Brightness
The ability to change the
brightness of the sound of certain timbres or tracks.
Brightness determines the overall colour of the sound — from soft, smoothed to sonorous, sharp. This feature allows the player to adjust this coloration to their preference, and thus further expands the possibilities for customizing the sound of the instrument.
Fine tuning
The ability to fine-tune the digital piano for specific frequencies.
The essence of this function is generally similar to transposition — a slight shift of each note in frequency up or down. However, with fine tuning, the shift does not occur in steps (by an integer number of semitones), but very slowly and smoothly — by a certain number of hertz or even tenths of a hertz relative to the base scale. The base scale is often called "440 Hz" — this is the standard frequency of the "la" note of the first octave, according to which the rest of the scale is tuned. For a musician, fine tuning usually looks like an opportunity to set a different key frequency value — for example, 438 Hz or 441.2 Hz.
This feature can be useful for tuning the digital piano to another instrument whose frequencies change smoothly, such as a guitar. In many situations, it is easier to change the frequency settings in a digital device than to twist the strings or otherwise fiddle with complex tuning.
Connectable pedals
The largest number of pedals that can be connected to the Digital Piano at the same time.
Pedals are an indispensable element of equipping a traditional piano, respectively, they are also necessary for electronic analogues of this instrument. However, in stationary devices (see "Body") the pedals are made built-in (see above), so this option is found only in portable models. Also note that if a stationary digital piano has 3 pedals as standard — like in a real piano — then portable digital pianos often have fewer. This is due to the fact that a full set of three pedals is rarely required in fact, and in many cases just one is enough (especially since many instruments allow you to reconfigure its functions).
In general, it makes sense to specifically buy an instrument with three connected pedals mainly for demanding professional musicians who value the full functionality of the pedals (or the ability to tie an extended set of functions to the foot control). In other cases, this parameter is not particularly important.