Dark mode
USA
Catalog   /   Office & Stationery   /   Printing & Polygraphy   /   3D Printers

Comparison Anycubic Kobra 2 vs Anycubic Kobra Max

Add to comparison
Anycubic Kobra 2
Anycubic Kobra Max
Anycubic Kobra 2Anycubic Kobra Max
from $215.65 
Expecting restock
from $391.25 
Outdated Product
TOP sellers
Print technologydeposition modeling (FDM/FFF)deposition modeling (FDM/FFF)
Filament materialABS, PLA, PETG, TPUABS, PLA, PETG, TPU
3D model file format.stl , .obj.stl , .obj
Compatible softwareCura, Simplify3D, Repiter-HostCura, Simplify3D, Repiter-Host
Object dimensions (HxWxD)250x220x220 mm450x400x400 mm
Object volume12 L72 L
Printing process
Min layer thickness50 µm100 µm
Print speed300 mm/s180 mm/s
Nozzle diameter0.4 mm0.4 mm
Min thread diameter1.75 mm1.75 mm
Heating bed temperature110 °C90 °C
Extruder (nozzle) temperature260 °C260 °C
Extruder typeDirect
Number of extruders11
More features
Features
heated bed
resume print
filament sensor
heated bed
 
filament sensor
Data transfer
card reader
USB type C
 
card reader
 
PC connection (USB)
General
LCD display
4.3"
touch screen
4.3"
touch screen
Power400 W
Dimensions48.6x44x43.5 cm72x71.5x66.5 cm
Weight8.4 kg16 kg
Added to E-Catalogseptember 2023june 2022

Object dimensions (HxWxD)

The maximum dimensions of a product that can be printed on a 3D printer in one cycle.

The larger the dimensions of the model, the wider the choice for the user, the greater the variety of sizes available for printing. On the other hand, "large-sized" printers take a lot of space, and this parameter significantly affects the cost of the device. In addition, while printing a large model with FDM/FFF (see "Printing Technology"), larger nozzles and higher print speeds are desirable — and these features negatively affect detailing and the print quality of tiny objects. Therefore, while choosing, you should not aim the utmost maximum sizes — you should realistically assess the dimensions of the objects that you're going to print, and proceed from these data (plus a small margin in case of unexpected moments). In addition, we note that a large product can be printed in parts, and then piece these parts together.

As for the specific values of each size, all three main dimensions have the same division into nominal categories (small size, medium, above average and large): — height — less than 150 mm, 151 – 200 mm, 201 – 250 mm, more than 250 mm ; — width — less than 150 mm, 151 – 200 mm, 201 – 250 mm, more than 250 mm ; — depth — less than 150 mm, 151 – 200 mm, 201 – 250 mm, more than 250 mm.

Object volume

The largest volume of an object that can be printed on a printer. This indicator directly depends on the maximum dimensions (see above) — usually, it corresponds to these dimensions multiplied by each other. For example, dimensions of 230x240x270 mm will correspond to a volume of 23*24*27 = 14,904 cm³, that is, 14.9 litres.

The exact meaning of this indicator depends on the printing technology used (see above). These data are fundamental for photopolymer technologies SLA and DLP, as well as for powder SHS: the volume of the model corresponds to the amount of photopolymer/powder that needs to be loaded into the printer to print the product to the maximum height. If the size is smaller, this amount may decrease proportionally (for example, printing a model at half the maximum height will require half the volume), however, some printers require a full load regardless of the size of the product. In turn, for FDM/FFF and other similar technologies, the volume of the model is more of a reference value: the actual material consumption there will depend on the configuration of the printed product.

As for specific figures, the volume up to 5 litres can be considered as small, from 5 to 10 litres — medium, more than 10 litres — large.

Min layer thickness

The smallest thickness of a single layer of material that can be applied with a printer.

In photopolymer devices of SLA and DLP formats (see "Print Technology") the meaning of this parameter is simple: it is the smallest height of a one pass cycle of the working platform. The smaller this height, the better detailing can be achieved on the device; however, in such models, this height is usually small — most often less than 50 µm. But in devices based on FDM/FFF and similar technologies using nozzles, there are also higher rates — 51 – 100 µm and even more. Here it is worth noting the fact that a small minimum layer thickness allows efficient use of small nozzles and achieves better detail. On the other hand, increasing detailing reduces productivity, and to compensate this fact, it is necessary to increase the print speed by increasing power (both heating and blowing), which, in turn, affects the cost. Therefore, choosing one should proceed from real needs: for objects with relatively low detail, there is no need to look for a printer with a small layer thickness.

It is worth noting that in FDM/FFF printers, the optimal layer thickness depends on the nozzle diameter (see below) and the specifics of printing — for example, for a “in one line” perimeter without filling, you can use the minimum layer thickness, while for filling it is not recommended. Det...ailed recommendations on the optimal layer thickness for different situations can be found in special guides.

Print speed

The print speed provided by an FDM/FFF type 3D printer (see "Print Technology").

The print speed in this case is the maximum amount of material that can pass through a regular nozzle per second. The higher this value (150 mm/s, 180 mm/s , 200 mm/s and above), the faster the printer is able to cope with a particular task. Of course, the actual production time will depend on the configuration of the printing model and the print settings, but other things being equal, a printer with a higher speed will operate faster. On the other hand, an increase in speed requires an increase in heating power (because the extruder has time to melt the required volume of material), blowing power (otherwise the plastic will not have time to solidify normally), as well as stricter control of the movement of the extruder (to compensate for inertia from fast movements). So, generally, this spec strongly depends on the price category and specialization of the device, and it’s worth looking specifically for a “fast” model in cases where the speed of production is critical. Otherwise, a 100 mm/s model or 120 mm/s is sufficient, or even less.

Heating bed temperature

Maximum heating temperature in 3D printers with heated bed (for more details, see the relevant paragraph). The higher the limit, the more varieties of plastic can be used for printing. So, models with heating up to 100 °C are suitable for 3D printing with PLA plastic, with a bed temperature of 100 to 120 °C — for working with ABS plastic and nylon, high-temperature ones — allow the use of polycarbonate and refractory varieties of plastic.

Extruder type

Extruders in 3D printers are responsible for feeding plastic material and creating three-dimensional objects from it. In fact, the extruder is a print head that creates new objects. There are two main types of extruders:

— Direct. Direct type of extruder with the feeding mechanism placed directly on the movable carriage. This provides a number of advantages, in particular, the ability to print with flexible plastics even at high speeds, insignificant printing errors due to the minimum feeding distance, and quick and convenient replacement of printing materials. At the same time, Direct type extruders have large dimensions and weight, which entails an increase in inertia - if errors are detected, such a carriage cannot be stopped instantly, and its weight must be taken into account when programming the print.

— Bowden. In this version, the extruder is separated from the printing mechanism, and the filament is supplied to the hotend (heating part) through a special tube. This feed allows you to lighten the weight of the carriage by moving the engine to the frame. The dimensions of the print head are also reduced. Bowden-type extruders limit the handling of flexible materials, increase the tolerance of the printing rod, and make changing materials more difficult. However, overall printing speed increases.

Features

Additional features of the printer.

The list of the most popular features in modern 3D printers includes, in particular, a heated bed, a closed chamber, object scanning, a built-in camera, an LCD display (including touch), filament sensor, as well as resuming print function. Here is a more detailed description of these features:

— Heated bed. The availability of heating in the printing platform — the surface that is used as a support for the model to be built. This feature is found mainly in FDM/FFF printers (see "Printing Technology") and similar. The heated table ensures smooth and uniform cooling of the material, reducing the chance of deformations in completed models; this is especially important using materials with significant shrinkage. Also note that this feature is especially effective when combined with a closed print chamber (see below).

— Closed chamber. Operating area with a closed design. The specific designof such a chamber can be different — from a platform fenced on four sides to a sealed compartment where you can even create a vacuum for some specific printing methods. These nuances should be clarified separately. Anyway, the closed chamber protects the pr...inted product from dust, moisture and other contaminants; but the more specific meaning of this feature may be different — depending on the printing technology (see above). So, in FFF/FDM printers and similar devices, the closed design allows to achieve more uniform cooling of the workpiece and avoids deformation due to material shrinkage. And almost all SLA and DLP units have such a design — even in the simplest models of this category, the operating area is covered at least with a light filter that protects the user from bright light.

— Object scanning. Built-in 3D scanner that allows you to create “digital masks” of various objects. The printer can recreate then a copy of the scanned item, based on that masks. This function actually turns the device into a three-dimensional copier: the user does not need to build a model in a CAD programme, it is enough to have a sample for copying. However, if necessary, the digital image can be edited — usually, the scanner allows you to transfer the received data to the same CAD programs.

— Built-in camera. Own digital camera installed directly into the printer and aimed at the operating area. Designed to capture the workflow; most often it allows you to shoot both photos and videos, but it's ok to clarify the specific shooting capabilities separately. Regarding the use of cameras, it is worth noting that printers with such equipment usually also have Wi-Fi modules and/or LAN network connectivity (see "Data Transfer"). This allows you to transfer the captured video over a local network or even over the Internet (these details, again, should be clarified for each model), and further use of the footage depends primarily on the user's desire. One of the most popular ways to use this is remote control of printing: if you have a camera, you can monitor the process without having to go to the printer once again. In addition, the data from the camera (live or recorded) can be used as a demonstration, as a visual aid for training/instruction, etc.

— Resume printing. A feature that allows you to continue the printing process after it has been stopped. It is useful primarily in cases where the printer is used at strictly defined hours — for example, during working hours; it can also come in handy if the printer is turned off due to a power failure. The second option is fairly obvious; and regarding the first, we should remind that 3D printing is a rather continuous process, and the creation of even a small product takes hours. Because of this, situations often arise when a work day (or other similar period of time) is not enough to complete the work. In such situations, the resume printing feature is useful: the printer can be paused for the duration of the absence, and to resume the process with returning to the printer. However, it should be noted that operating with some filaments, interruptions in work are undesirable; so if you plan to use this function, it's ok to clarify its compatibility with the preferred filament.

— Filament sensor. Sensor for controlling the supply of plastic filament during the printing process. As a rule, such a sensor is installed on the extruder (print head). If the filament suddenly runs out or its supply is interrupted, the sensor will prevent the print from failing due to lack of material - if it detects a lack of filament, it transmits a signal to stop the print so that the user can add filament and resume the process.

Data transfer

Data transfer methods provided in the 3D printer design. We are talking primarily about data relating to the model being printed (from which the printer directly prints), in some cases also about setting up the device and other ways of interacting with it; For more details, see individual list items.

As for specific options, in addition to the traditional communication to a PC via USB or USB type C, modern printers may provide data transfer methods such as a card reader, its own USB port, a network communication via LAN, as well as a wireless communication via Wi-Fi. Here are the features of each of these options:

- Card reader. The printer has its own memory card slot. Most often designed to work with popular SD cards; however, even such media have several varieties, so it would not hurt to check the range of supported cards separately. In any case, the main purpose of this function is direct printing: by installing a card with a recorded project file in the printer, you can make a model without even connecting the device to a computer. There may be other ways to use the card reader - for example, copying materials from a model scanner to external media (see “Functions and capabilities”). Note that this function is convenient mainly for exchanging dat...a with a laptop - a slot for memory cards is available in almost any modern laptop.

- USB. Own USB connector on the printer body. It is used similarly to the card reader described above - for working with external media, in this case “flash drives” and other similar devices. The methods for using the USB port are also similar - mainly direct printing, but other options are also possible (copying data from a scanner, updating firmware, etc.).

— USB type C. Availability of a USB type C port in the interface communication shelf of the device. Such connectors are smaller in size compared to classic USB, and they also have a convenient double-sided design that allows you to connect the plug to either side. USB type C is supposed to be used to connect a 3D printer to a computer or mobile gadgets for managing and transferring printed files. At the same time, this connector can be used to connect external storage media.

- Wi-Fi. A wireless communication module that can be used both to connect the printer to local networks and for direct communication with tablets, laptops and other gadgets. Specific capabilities should be clarified separately, but here we note that a network communication allows you to use the printer as a common device for all computers on the local network and even access it from the Internet (although the latter may require specific settings). At the same time, Wi-Fi is a more convenient alternative to a wired LAN (see below), as it allows you to do without laying wires. As for direct communication with another gadget, this option is less common. It usually provides the ability to send projects for printing and access to basic settings; and to use such control, you may need to install a special application.

— Connection to PC (USB). Connecting to the USB port of a PC or laptop is the most popular way to directly connect a 3D printer to similar devices. The vast majority of modern computers are equipped with ports of this type, and even connectors of the outdated version of USB 2.0, not to mention newer standards, are enough to work with a printer. The communication itself can be used both to send print jobs and to control operating parameters - and it is through a PC/laptop that detailed settings that are not accessible through the screen on the printer itself are usually implemented. In addition, if necessary, you can share access to the unit via a computer via a local network or the Internet - even if the printer itself does not have a LAN connector or a Wi-Fi module. This is much more difficult to organize and not as convenient as using a network model with a direct communication to the local area, but it eliminates the need to overpay for additional connectivity options in the printer itself.

— Connection to PC (LAN). Connection to external devices via LAN - a standard connector for wired communication to computer networks. Actually, such a communication is intended mainly for using the printer as a network device - when access to printing and settings can be obtained from different computers on a local network, or even via the Internet. LAN is less convenient to connect than Wi-Fi, as it requires cabling, but this communication is more reliable and does not suffer from the presence of a large number of wireless devices nearby. In addition, the cable can be useful if the Wi-Fi router or access point does not reach the printer location.
Note that the standard use of LAN involves connecting to a network router, but a direct communication to a computer is also possible. The second option allows you to use this connector similarly to the USB described above - that is, only for one computer; but if this computer is connected to a local network and/or the Internet, you can also configure network access to the printer.

Power

Rated input power of the printer, in fact — the highest power consumed by the device in regular operation.

This indicator is directly related to the specs of the device, primarily the overall performance. However, generally, 3D printers are a relatively economical devices: among solutions that are not related to specialized industrial equipment, values of more than 1 kW are extremely rare, and even in the most performant models this figure does not exceed 3 kW. For such capacities, an ordinary household power outlet is quite enough, so you have to pay attention to power consumption mainly in specific cases — for example, when assessing the load on a voltage stabilizer or a backup power source.
Anycubic Kobra 2 often compared
Anycubic Kobra Max often compared