USA
Catalog   /   Office & Stationery   /   Printing & Polygraphy   /   3D Printers

Comparison Creality Ender 3 S1 vs Creality Ender 3 S1 Plus

Add to comparison
Creality Ender 3 S1
Creality Ender 3 S1 Plus
Creality Ender 3 S1Creality Ender 3 S1 Plus
from $366.00 
Expecting restock
from $349.50 
Expecting restock
TOP sellers
Print technologydeposition modeling (FDM/FFF)deposition modeling (FDM/FFF)
Filament materialABS, PLA, TPU, PETGABS, PLA, TPU, PETG
3D model file format.stl , .obj, .gcode.stl , .obj, .gcode
Compatible softwareCura, Repetier-Host, Simplify3DCura, Repetier-Host, Simplify3D
Object dimensions (HxWxD)270x220x220 mm300x300x300 mm
Object volume13 L27 L
Printing process
Min layer thickness100 µm100 µm
Print speed150 mm/s150 mm/s
Nozzle diameter0.4 mm0.4 mm
Min thread diameter1.75 mm1.75 mm
Heating bed temperature100 °C100 °C
Extruder (nozzle) temperature260 °C260 °C
Extruder typeDirectDirect
Number of extruders11
More features
Features
heated bed
resume print
 
heated bed
resume print
filament sensor
Data transfer
card reader
USB type C
 
card reader
USB type C
PC connection (USB)
General
LCD display
4.3"
 
4.3"
touch screen
Power350 W350 W
Dimensions49x45x62 cm56x53.5x65.5 cm
Weight9.1 kg10.25 kg
Added to E-Catalogmarch 2023march 2023

Object dimensions (HxWxD)

The maximum dimensions of a product that can be printed on a 3D printer in one cycle.

The larger the dimensions of the model, the wider the choice for the user, the greater the variety of sizes available for printing. On the other hand, "large-sized" printers take a lot of space, and this parameter significantly affects the cost of the device. In addition, while printing a large model with FDM/FFF (see "Printing Technology"), larger nozzles and higher print speeds are desirable — and these features negatively affect detailing and the print quality of tiny objects. Therefore, while choosing, you should not aim the utmost maximum sizes — you should realistically assess the dimensions of the objects that you're going to print, and proceed from these data (plus a small margin in case of unexpected moments). In addition, we note that a large product can be printed in parts, and then piece these parts together.

As for the specific values of each size, all three main dimensions have the same division into nominal categories (small size, medium, above average and large): — height — less than 150 mm, 151 – 200 mm, 201 – 250 mm, more than 250 mm ; — width — less than 150 mm, 151 – 200 mm, 201 – 250 mm, more than 250 mm ; — depth — less than 150 mm, 151 – 200 mm, 201 – 250 mm, more than 250 mm.

Object volume

The largest volume of an object that can be printed on a printer. This indicator directly depends on the maximum dimensions (see above) — usually, it corresponds to these dimensions multiplied by each other. For example, dimensions of 230x240x270 mm will correspond to a volume of 23*24*27 = 14,904 cm³, that is, 14.9 litres.

The exact meaning of this indicator depends on the printing technology used (see above). These data are fundamental for photopolymer technologies SLA and DLP, as well as for powder SHS: the volume of the model corresponds to the amount of photopolymer/powder that needs to be loaded into the printer to print the product to the maximum height. If the size is smaller, this amount may decrease proportionally (for example, printing a model at half the maximum height will require half the volume), however, some printers require a full load regardless of the size of the product. In turn, for FDM/FFF and other similar technologies, the volume of the model is more of a reference value: the actual material consumption there will depend on the configuration of the printed product.

As for specific figures, the volume up to 5 litres can be considered as small, from 5 to 10 litres — medium, more than 10 litres — large.

Features

Additional features of the printer.

The list of the most popular features in modern 3D printers includes, in particular, a heated bed, a closed chamber, object scanning, a built-in camera, an LCD display (including touch), filament sensor, as well as resuming print function. Here is a more detailed description of these features:

— Heated bed. The availability of heating in the printing platform — the surface that is used as a support for the model to be built. This feature is found mainly in FDM/FFF printers (see "Printing Technology") and similar. The heated table ensures smooth and uniform cooling of the material, reducing the chance of deformations in completed models; this is especially important using materials with significant shrinkage. Also note that this feature is especially effective when combined with a closed print chamber (see below).

— Closed chamber. Operating area with a closed design. The specific designof such a chamber can be different — from a platform fenced on four sides to a sealed compartment where you can even create a vacuum for some specific printing methods. These nuances should be clarified separately. Anyway, the closed chamber protects the pr...inted product from dust, moisture and other contaminants; but the more specific meaning of this feature may be different — depending on the printing technology (see above). So, in FFF/FDM printers and similar devices, the closed design allows to achieve more uniform cooling of the workpiece and avoids deformation due to material shrinkage. And almost all SLA and DLP units have such a design — even in the simplest models of this category, the operating area is covered at least with a light filter that protects the user from bright light.

— Object scanning. Built-in 3D scanner that allows you to create “digital masks” of various objects. The printer can recreate then a copy of the scanned item, based on that masks. This function actually turns the device into a three-dimensional copier: the user does not need to build a model in a CAD programme, it is enough to have a sample for copying. However, if necessary, the digital image can be edited — usually, the scanner allows you to transfer the received data to the same CAD programs.

— Built-in camera. Own digital camera installed directly into the printer and aimed at the operating area. Designed to capture the workflow; most often it allows you to shoot both photos and videos, but it's ok to clarify the specific shooting capabilities separately. Regarding the use of cameras, it is worth noting that printers with such equipment usually also have Wi-Fi modules and/or LAN network connectivity (see "Data Transfer"). This allows you to transfer the captured video over a local network or even over the Internet (these details, again, should be clarified for each model), and further use of the footage depends primarily on the user's desire. One of the most popular ways to use this is remote control of printing: if you have a camera, you can monitor the process without having to go to the printer once again. In addition, the data from the camera (live or recorded) can be used as a demonstration, as a visual aid for training/instruction, etc.

— Resume printing. A feature that allows you to continue the printing process after it has been stopped. It is useful primarily in cases where the printer is used at strictly defined hours — for example, during working hours; it can also come in handy if the printer is turned off due to a power failure. The second option is fairly obvious; and regarding the first, we should remind that 3D printing is a rather continuous process, and the creation of even a small product takes hours. Because of this, situations often arise when a work day (or other similar period of time) is not enough to complete the work. In such situations, the resume printing feature is useful: the printer can be paused for the duration of the absence, and to resume the process with returning to the printer. However, it should be noted that operating with some filaments, interruptions in work are undesirable; so if you plan to use this function, it's ok to clarify its compatibility with the preferred filament.

— Filament sensor. Sensor for controlling the supply of plastic filament during the printing process. As a rule, such a sensor is installed on the extruder (print head). If the filament suddenly runs out or its supply is interrupted, the sensor will prevent the print from failing due to lack of material - if it detects a lack of filament, it transmits a signal to stop the print so that the user can add filament and resume the process.

Data transfer

Data transfer methods provided in the 3D printer design. We are talking primarily about data relating to the model being printed (from which the printer directly prints), in some cases also about setting up the device and other ways of interacting with it; For more details, see individual list items.

As for specific options, in addition to the traditional communication to a PC via USB or USB type C, modern printers may provide data transfer methods such as a card reader, its own USB port, a network communication via LAN, as well as a wireless communication via Wi-Fi. Here are the features of each of these options:

- Card reader. The printer has its own memory card slot. Most often designed to work with popular SD cards; however, even such media have several varieties, so it would not hurt to check the range of supported cards separately. In any case, the main purpose of this function is direct printing: by installing a card with a recorded project file in the printer, you can make a model without even connecting the device to a computer. There may be other ways to use the card reader - for example, copying materials from a model scanner to external media (see “Functions and capabilities”). Note that this function is convenient mainly for exchanging dat...a with a laptop - a slot for memory cards is available in almost any modern laptop.

- USB. Own USB connector on the printer body. It is used similarly to the card reader described above - for working with external media, in this case “flash drives” and other similar devices. The methods for using the USB port are also similar - mainly direct printing, but other options are also possible (copying data from a scanner, updating firmware, etc.).

— USB type C. Availability of a USB type C port in the interface communication shelf of the device. Such connectors are smaller in size compared to classic USB, and they also have a convenient double-sided design that allows you to connect the plug to either side. USB type C is supposed to be used to connect a 3D printer to a computer or mobile gadgets for managing and transferring printed files. At the same time, this connector can be used to connect external storage media.

- Wi-Fi. A wireless communication module that can be used both to connect the printer to local networks and for direct communication with tablets, laptops and other gadgets. Specific capabilities should be clarified separately, but here we note that a network communication allows you to use the printer as a common device for all computers on the local network and even access it from the Internet (although the latter may require specific settings). At the same time, Wi-Fi is a more convenient alternative to a wired LAN (see below), as it allows you to do without laying wires. As for direct communication with another gadget, this option is less common. It usually provides the ability to send projects for printing and access to basic settings; and to use such control, you may need to install a special application.

— Connection to PC (USB). Connecting to the USB port of a PC or laptop is the most popular way to directly connect a 3D printer to similar devices. The vast majority of modern computers are equipped with ports of this type, and even connectors of the outdated version of USB 2.0, not to mention newer standards, are enough to work with a printer. The communication itself can be used both to send print jobs and to control operating parameters - and it is through a PC/laptop that detailed settings that are not accessible through the screen on the printer itself are usually implemented. In addition, if necessary, you can share access to the unit via a computer via a local network or the Internet - even if the printer itself does not have a LAN connector or a Wi-Fi module. This is much more difficult to organize and not as convenient as using a network model with a direct communication to the local area, but it eliminates the need to overpay for additional connectivity options in the printer itself.

— Connection to PC (LAN). Connection to external devices via LAN - a standard connector for wired communication to computer networks. Actually, such a communication is intended mainly for using the printer as a network device - when access to printing and settings can be obtained from different computers on a local network, or even via the Internet. LAN is less convenient to connect than Wi-Fi, as it requires cabling, but this communication is more reliable and does not suffer from the presence of a large number of wireless devices nearby. In addition, the cable can be useful if the Wi-Fi router or access point does not reach the printer location.
Note that the standard use of LAN involves connecting to a network router, but a direct communication to a computer is also possible. The second option allows you to use this connector similarly to the USB described above - that is, only for one computer; but if this computer is connected to a local network and/or the Internet, you can also configure network access to the printer.

LCD display

The printer has its own screen. The specific functionality of such a screen can be different - from the simplest indicator for several characters and service symbols to a full-fledged color matrix capable of displaying inscriptions, drawings, etc.; These nuances should be clarified separately. However, in any case, this feature provides additional ease of management: various service information can be displayed on the screen to help the user set up printing parameters and control the process.
We would like to emphasize that touch displays are not included in this category; they are indicated as a separate function. But the screen size directly affects the comfort when working with the device.

There are also models with a touch screen, similar to those used in smartphones and tablets. Such a display is a full-fledged control tool, and it is more convenient and functional than more traditional options such as keypads: you can display a wide variety of control elements (buttons, sliders, lists, etc.) on the screen, selecting the optimal set of these elements for your needs. specific situation. In addition, the screen itself usually has a color matrix with a fairly high resolution, which makes it possible to display a wide variety of service data - even drawings and diagrams. Thanks to all this, most printer control functions can be performed through such a display; some models with such equipment are able to work even without connecting to a computer. The disad...vantages of touch displays include their higher cost than conventional ones, despite the fact that control via a computer is usually still more practical and visual. So this function is relatively rare these days.
Creality Ender 3 S1 often compared
Creality Ender 3 S1 Plus often compared