Object dimensions (HxWxD)
The maximum dimensions of a product that can be printed on a 3D printer in one cycle.
The larger the dimensions of the model, the wider the choice for the user, the greater the variety of sizes available for printing. On the other hand, "large-sized" printers take a lot of space, and this parameter significantly affects the cost of the device. In addition, while printing a large model with FDM/FFF (see "Printing Technology"), larger nozzles and higher print speeds are desirable — and these features negatively affect detailing and the print quality of tiny objects. Therefore, while choosing, you should not aim the utmost maximum sizes — you should realistically assess the dimensions of the objects that you're going to print, and proceed from these data (plus a small margin in case of unexpected moments). In addition, we note that a large product can be printed in parts, and then piece these parts together.
As for the specific values of each size, all three main dimensions have the same division into nominal categories (small size, medium, above average and large):
— height —
less than 150 mm,
151 – 200 mm,
201 – 250 mm,
more than 250 mm ;
— width —
less than 150 mm,
151 – 200 mm,
201 – 250 mm,
more than 250 mm ;
— depth —
less than 150 mm,
151 – 200 mm,
201 – 250 mm,
more than 250 mm.
Object volume
The largest volume of an object that can be printed on a printer. This indicator directly depends on the maximum dimensions (see above) — usually, it corresponds to these dimensions multiplied by each other. For example, dimensions of 230x240x270 mm will correspond to a volume of 23*24*27 = 14,904 cm³, that is, 14.9 litres.
The exact meaning of this indicator depends on the printing technology used (see above). These data are fundamental for photopolymer technologies SLA and DLP, as well as for powder SHS: the volume of the model corresponds to the amount of photopolymer/powder that needs to be loaded into the printer to print the product to the maximum height. If the size is smaller, this amount may decrease proportionally (for example, printing a model at half the maximum height will require half the volume), however, some printers require a full load regardless of the size of the product. In turn, for FDM/FFF and other similar technologies, the volume of the model is more of a reference value: the actual material consumption there will depend on the configuration of the printed product.
As for specific figures, the volume
up to 5 litres can be considered as small,
from 5 to 10 litres — medium,
more than 10 litres — large.
LCD panel resolution
An important characteristic that determines the quality and detail of 3D printing on LCD displays (see “Printing technology”). The resolution of an LCD matrix indicates how fine details and layers can be created when printing objects. Essentially, this is the number of pixels that transmit light through a given matrix. The more pixels, the more detailed and small objects can be printed. The highest quality printing results are provided by models
with a high matrix resolution(from 6K and above).
Print speed
The printing speed provided by an LCD 3D printer (see “Printing technology”).
This parameter usually refers to the amount of material or layers that the printer can create in one hour. The higher the print speed (
70 – 80 mm/h,
over 80 mm/h), the faster the printer can complete the print of the object, but the speed can also affect the print quality. Higher speeds often result in less detailed and rougher printed objects, while lower speeds (
up to 60 mm/h,
60 – 70 mm/h) produce higher quality and more precise details. The choice of optimal speed depends on the specific requirements for the printed object and the desired quality of 3D printing.