USA
Catalog   /   Mobile Phones & Gadgets   /   Mobile Phones & Accessories   /   Powerbank

Comparison Sandberg Powerbank USB-C PD 130W 50000 vs Voltero S50

Add to comparison
Sandberg Powerbank USB-C PD 130W 50000
Voltero S50
Sandberg Powerbank USB-C PD 130W 50000Voltero S50
Outdated ProductOutdated Product
TOP sellers
Main
Maximum power 100 W. Possibility of charging laptops. 6 ports. Fast charging (60 W) of the power bank. Two cables included. Lamp. Display. Carrying strap.
Battery capacity50000 mAh50000 mAh
Real capacity31000 mAh31000 mAh
Battery capacity185 W*h185 W*h
Battery typeLi-IonLi-Pol
Charging gadgets (outputs)
USB type C22
USB-A32
Max. power (per 1 port)100 W100 W
Power output (all ports)123 W
USB type С
100 W
5V/3A, 9V/3A, 12V/3A, 15V/3A, 20V/5A
100 W
5V/3A, 9V/3A, 12V/3A, 15V/3A, 20V/5A
USB type C (2nd)
30 W
5V/3A, 9V/3A, 12V/2.5A
60 W
5V/3A, 9V/3A, 12V/3A, 15V/3A, 20V/3A
USB A
18 W
5V/2A, 9V/2A
18 W
5V/3A, 9V/2A, 12V/1.5A
USB A (2nd)
18 W
5V/2A, 9V/2A
18 W
5V/3A, 9V/2A, 12V/1.5A
USB A (3rd)
18 W
5V/2A, 9V/2A
 
 
Power bank charging
Power bank charging inputs
USB type C
Apple Lightning
 
 
Power bank charge current via USB3 А3 А
Power bank charge power60 W60 W
Full charge time13 h
Features
Fast charge
Quick Charge 3.0
Power Delivery 3.0
Quick Charge 3.0
Power Delivery 3.0
Bundled cables (adapters)
USB type C
USB type C
Features
info display
lamp
 
 
General
Body materialplasticplastic
Dimensions150x70x50 mm207x136x33 mm
Weight1052 g1272 g
Color
Added to E-Catalogapril 2023january 2023

Battery type

The type of own batteries installed in the power bank. Lithium-ion(Li-Ion) or lithium-polymer(Li-Pol) batteries are most commonly used today. Other options are less common — solutions based on nickel-metal hydride(Ni-Mh) batteries, as well as on LiFePO4 type cells. In addition, a rather promising development has appeared relatively recently — graphene batteries; however, as of early 2021, they are just beginning to be introduced into mass production. Here are the main features of each of these varieties:

— Li-Ion. Lithium-ion technology allows you to create quite capacious batteries of small dimensions and weight. In addition, such elements are easy to use (the main operating parameters are regulated by the built-in controller), have a high charge speed and are practically not affected by the "memory effect" (reduction in capacity when charging an incompletely discharged battery). The main disadvantage of lithium-ion batteries is a rather narrow range of permissible ambient temperatures. This is not a problem in urban usage, when the power bank is used mainly indoors and is carried in a pocket or in a bag; but for less favorable conditions (such as long hikes in the cold season), it is worth choosing models with good thermal insulation. You can also find information that lithium-ion batteries are prone to fires and even explosions; however, this is usually due to...failures in the embedded controllers, and these controllers are also constantly being improved, and nowadays the risk of such an accident is so low that it can actually be neglected.

— Li-pol. Further development and improvement of the lithium-ion technology described above; the main difference is the use of a solid polymer electrolyte instead of a liquid one (hence the name). This made it possible to achieve even greater capacity without increasing the dimensions, as well as to reduce the potential for fires and explosions during abnormal operation. On the other hand, lithium-polymer batteries are somewhat more expensive than lithium-ion batteries and are even more sensitive to temperature disturbances.

— Ni-Mh. Nickel-metal hydride batteries are distinguished by their reliability and a wide range of permissible temperatures, however, with the same dimensions, they are inferior in capacity to lithium-ion (and even more to lithium-polymer) batteries, and they also require certain specific operating rules to be observed. In addition, it is worth noting that Ni-Mh technology is well suited for removable batteries. It is in this format that such batteries are most often used: power banks of the Ni-Mh format are usually adapters with slots for several replaceable elements of a standard size (for example, AA). In this case, usually, several corresponding removable batteries are included in the kit, however, if desired, they can be replaced with other elements — these can even be disposable batteries from the nearest store. Such an opportunity can turn out to be very useful if the power bank is out of juice at an unfortunate moment, but there is no way to charge it; in addition, worn-out batteries can be replaced with fresh ones without changing the entire device.

Li-FePO4. Another modified version of the Li-Ion batteries described above, the so-called "lithium iron phosphate". The advantages of such cells over classical lithium-ion ones are, first of all, a stable discharge voltage (until the energy is exhausted), high peak power, long service life, resistance to low temperatures, stability and safety. In addition, due to the use of iron instead of cobalt, such batteries are also safer to manufacture and easier to dispose of. At the same time, they are noticeably inferior to the classic lithium-ion ones in terms of capacity, and they are more expensive, which is why they are rarely used.

— Graphene. Batteries based on graphene — a carbon film one atom thick. The battery itself consists of a set of such films, between which silicon plates are laid, and lithium cobaltate or magnesium oxide is used as an anode. This design provides a number of advantages over the earlier batteries described above. First, graphene technology provides a high charge density, which allows you to create capacious and at the same time light and compact batteries. Secondly, for the production of such batteries, fewer rare resources are needed than for the same lithium ones; and the production itself is more environmentally friendly. Thirdly, such batteries are not prone to overheating and explosions when overloaded or damaged. On the other hand, graphene power supplies take a long time to charge and are not durable. However, this technology is still developing, and in the future it is likely that these shortcomings will be eliminated — completely or at least partially.

USB-A

The total number of USB-A ports for charging connected gadgets. This type is gradually being replaced by USB type C, however, most models still use USB-A as the main output. This is also indicated by the number of corresponding ports. Classic are 2 USB-A outputs. However, there are also compact models for 1 output, and more impressive ones with 3 and 4 USB-A(even more).

Power output (all ports)

The total charge power provided by the power bank on all connectors overnight - when devices are connected simultaneously to all charging ports.

This parameter is given due to the fact that the total charge power does not always correspond to the sum of the maximum powers of all available ports. The built-in battery of a power bank often has its own limitation on the output power. Therefore, for example, in a model with two 18 W USB ports, each total charge power can be the same 18 W. Note that the distribution of power among the connectors may be different: in some models it is divided equally, in others it is divided in proportion to the maximum current strength (if it differs on different ports). These nuances should be clarified using the detailed characteristics of the charging connectors.

If you plan to regularly use all power bank connectors at once, you should pay attention to this indicator.

USB type C (2nd)

Characteristics of the second USB C port. Read more in the paragraph above.

USB A

A standard USB A port is characterized by the rated power supplied by the power bank when a load is connected to the first or only USB A output and the current strength. If there are several connectors of this type, the first one is considered to be capable of delivering more power.

The speed of the charging process directly depends on this indicator. Power is traditionally calculated by multiplying current by voltage; However, the standard voltage for USB power is 5 V, so current is considered to be the main indicator of power.

The charging power and, accordingly, the speed of the process depend on the current strength. Nowadays, on USB ports, a current of 2 A or 2.1 A is considered basic and quite modest, 2.4 A and 2.5 A are average, 3 A and more are noticeably above average, and certain fast charging technologies allow you to achieve values of 4 A. 4.5 A and 5 A. However, it is worth considering that to operate at high current, such an opportunity must be provided not only in the power bank, but also in the gadget being charged. So when purchasing a model, it doesn’t hurt to check whether the devices being charged suppo...rt high charge currents.

It is also worth noting two nuances associated with the presence of multiple USB charging ports. Firstly, they may differ in the current they produce. This allows you to select the optimal connector for each device: for example, to quickly charge a tablet with a capacious battery, it is desirable to have a higher current, and a device with a low charging current can be connected to a “weaker” port, so as not to create unnecessary load on the battery and controller. The second caveat is that if all USB connectors are used simultaneously, the current supplied by each of these connectors may be lower than the maximum; in other words, not all power banks allow you to simultaneously use USB ports at the maximum possible power. You can understand whether such a possibility exists by looking at the charge power (see below); if the charge power is not indicated, you should refer to detailed documentation from the manufacturer.

USB A (2nd)

Characteristics of the second USB A port. Read more in the paragraph above.

USB A (3rd)

Characteristics of the third USB A port. Read more in the paragraph above.

Power per USB-A (3rd)

Rated power output by the power bank when the load is connected to the third USB A port. For more information about this parameter, see "Power per USB A port (1st)".

USB-A current (3rd)

The rated power supplied by the power bank when a load is connected to the third USB port. For more information about this parameter, see “USB A current (1st)”.
Sandberg Powerbank USB-C PD 130W 50000 often compared
Voltero S50 often compared