Dark mode
USA
Catalog   /   TVs & Video   /   Camcorders & Accessories   /   Camcorders

Comparison Sony PXW-Z90 vs Sony PXW-X70

Add to comparison
Sony PXW-Z90
Sony PXW-X70
Sony PXW-Z90Sony PXW-X70
Compare prices 9
from $1,131.00 
Expecting restock
User reviews
0
0
0
1
TOP sellers
Featuresprofessionalprofessional
Media typeflash (memory card)flash (memory card)
Sensor
Sensor typeCMOSCMOS
Sensor size1"1"
Effective megapixels14.214.2
Camera lens
Focal length (35mm equivalent)29 – 348 mm29 – 426.9 mm
Aperturef/2.8 – f/4.5
Optical zoom12 х12 х
Digital zoom48 х48 х
Image stabilizationoptical
Filter diameter62 mm62 mm
Manual focus
Video shooting
Video resolution3840x2160 px1920x1080 px
Frame frequency60 fps60 fps
Recording formatsQFHD, XAVC, MPEG
Video recording speed100 Mbps, 60 Mbps, 50 Mbps, 35 Mbps50 Mbps, 35 Mbps, 28 Mbps, 25 Mbps
Minimum illuminance2 lux
Shutter speed1/8 – 1/10000 с1/8 — 1/10000 с
White balanceauto, preset (3200K), memory A, memory Bindoors, outdoors
Sound recording48 kHz/24 bit2 channels, 24 bits, 48 kHz
Screen
Screen size3.5 "3.5 "
Screen resolution1560 K pixels1056 K pixels
Features
Features
viewfinder
 
 
 
Wi-Fi module
NFC
 
viewfinder
backlight lamp
hot shoe
built-in speaker
Wi-Fi module
NFC
detachable microphone
Memory and sockets
Memory card supportSD, SDHC, SDXC, Memory Stick PRO DuoMemory Stick Pro Duo, SD, SDHC, SDXC
Memory card slots22
Connectors
USB
HDMI
SDI
AV output
XLR microphone input
headphone jack
USB
HDMI
SDI
AV output
XLR microphone input
headphone jack
Battery
Battery typeNP-FV70ANP-FV70
Battery capacity1900 mAh2060 mAh
Battery life2.3 h2 h
General
Remote control
Dimensions (WxHxD)121x104x275 mm130.3x180.9x287 mm
Weight1020 g1400 g
Color
Added to E-Catalogmarch 2018june 2015

Focal length (35mm equivalent)

Focal length of a standard video camera lens in terms of a 35 mm full-frame sensor. This parameter is also called the "equivalent focal length" — EFL.

The focal length itself is the distance from the optical centre of the lens (when focus to infinity) to the sensor, at which the sharpest image is obtained on the sensor. It is one of the key characteristics of any lens, because. determines the viewing angles, the degree of approximation and, accordingly, the specifics of the use of optics. At the same time, it is impossible to compare different options in terms of the actual focal length: the laws of physics are such that with different sizes of sensors, the same focal length will give different viewing angles. Therefore, EFL was adopted as a universal characteristic and criterion for comparison. It can be described as the focal length that a 35mm lens with the same viewing angles would have.

The larger the focal length, the narrower the viewing angle will be and the higher the degree of approximation of the visible scene. Optics with EFL up to 18 mm belongs to the class of ultra wide-angle ("fisheye") and is used primarily to create artistic effects. Distances up to 40 mm correspond to "wide angles", 50 mm gives the same degree of approximation as that of the naked eye, the range of 70-100 mm is considered optimal for portrait shooting, and large values allow the use of optics already as a telephoto lens. Knowing these provisions, one can approximately...evaluate the capabilities of the lens and its suitability for certain tasks; there are more detailed recommendations, they are described in special sources.

Also note that modern video cameras are usually equipped with lenses with a variable focal length (zoom), which allows you to change the degree of approximation and viewing angle; see "Optical Zoom" for details.

Aperture

Aperture of a standard video camera lens.

This parameter describes how much the lens attenuates the light output. Usually it is written as a ratio between the diameter of the active hole and the focal length of the lens, while the first value is taken as one and denoted as f — for example, f/1.8 or f/5.6. Moreover, the smaller the number in such a record, the higher the aperture ratio: for example, in our example, the first option is “lighter” than the second. Also note that most lenses with a variable focal length (see above) also have a variable aperture — in such cases it is indicated by the range from maximum to minimum (from a smaller number to a larger one).

A high aperture ratio is important primarily when shooting in low light conditions: it allows you to capture an image without “lifting up” the sensor sensitivity and without creating additional artifacts in the form of noise, and in the photo shooting mode, you can also work with shorter shutter speeds (which is useful for dynamic scenes). In addition, the higher the aperture, the lower the depth of field and the easier it is to get a blurry background. Note that for simple everyday tasks this parameter does not play a decisive role, but in professional shooting it can be very significant.

Image stabilization

An image stabilization method provided in the design of a video camera. The stabilization function itself is designed to compensate for small camera shakes so that they are not noticeable in the image. This is especially true when shooting handheld, and in fact most modern models are designed specifically for such usage. According to the method of work, there are such options:

Optical. A special mechanism with a system of gyroscopes and movable lenses, installed directly in the lens, is responsible for the operation of such stabilization systems. It introduces a correction for all tremors, vibrations, etc., and the “picture” falls on the already stabilized sensor. Optical systems are considered the most advanced and efficient, because. their work allows you to use the entire area of the sensor, fully exploit its capabilities and provide good image quality. Among the shortcomings, it is worth noting the increase in the cost and weight of the cameras, as well as a slight decrease in the reliability of the optics. At the same time, these moments are most often not critical, and stabilizers of this type can be used even in simple and inexpensive models.

— Electronic. Electronic stabilization is carried out due to the fact that not the entire area of the sensor, but only some of it, is involved in the formation of an image for a frame. Simply put, the camera electronics "takes into account" a certain area of the sensor and...transfers the image from it into the frame; and at small displacements, this "area of attention" is also displaced, due to which the visible image remains motionless. The advantages of electronic systems are simplicity of design, lightness, compactness and high reliability; they can be used with even the simplest lenses installed in pocket cameras (see “Features”). Their main disadvantage is the need to reserve a part of the sensor, which reduces the size and resolution of the actually involved area and adversely affects the image quality.

— Optical / electronic. In such systems, both the methods described above are used — both the mechanism in the lens and the reserve on the sensor. This provides extremely high vibration compensation efficiency — the image remains stable even in such conditions in which any single method would be useless. On the other hand, the disadvantages of both options also remain relevant, and the cost of cameras with this feature is quite high.

Manual focus

Manual focus mode in the standard lens of the video camera (or, if the lens is not included, the ability to work with optics that have this mode). This allows the operator to control the sharpness in the frame himself, without relying on automation.

The point of this feature is that even the most advanced autofocus systems do not always work as expected. This is especially critical in professional shooting: many artistic techniques related to depth of field can only be implemented manually. On the other hand, this mode of operation is more difficult than shooting with autofocus, it requires certain skills and constant control. Therefore, manual focus is quite rare in amateur models (see "Features"), but is almost mandatory for professional ones.

Note that some of these lenses do not have autofocus at all.

Video resolution

The maximum video resolution that the camera can capture. Resolution is the size of an image in points (pixels); usually it is written in two numbers, which correspond to the number of pixels horizontally and vertically.

The more pixels in the image — the clearer it is, the better you can see small details on it, however, the size of the video files increases accordingly. In addition, it is worth considering that in order to fully view the footage, you will need a screen of the appropriate resolution — otherwise all the advantages of the image will be negated. And this parameter also significantly affects the price of the device.

The smallest maximum resolution found in modern camcorders is about 720x480; the quality of such a "picture" can be compared with analogue television broadcasting. Resolution 1280x720 corresponds to the HD standard, it can be found among inexpensive TVs and monitors, and 1920x1080 (Full HD) is the most popular option among mid-range and top-class video devices. The maximum resolution used in modern consumer electronics (including camcorders) is 4K, 4096x2160; it is typical for the most advanced devices.

The vast majority of cameras are able to work not only with the maximum resolution, but also with several “more modest” options — for those cases where small file volumes are more important than high resolution.

Recording formats

Video file formats that the camera can use to store recorded footage. If you want to view these materials using a separate device (player, media centre, etc.), you should make sure that this player supports the appropriate formats, otherwise conversion may be necessary.

Video recording speed

The data transfer speed provided by the camera when recording video. This parameter is also called bitrate (i.e., the number of bits per unit of time). For any file format used for recording, the general rule is that the higher the bitrate, the better the image quality (especially for formats that use lossy compression). On the other hand, high speed have appropriate requirements for the capabilities of the memory cards used — for more details, see "Memory card support"; and it increases the size of the file accordingly. Therefore, many modern camcorders are able to work with different bitrates; this allows you to choose the best option depending on what is more important for you at the moment — maximum quality or the ability to work with a slow card.

At the same time, we note that in terms of quality, this parameter is important mainly for professional video shooting. If you need a camera for amateur purposes, there is no need to look for the maximum bitrate: after all, such models (and memory cards for them) cost accordingly.

Minimum illuminance

The lowest illumination of the scene being shot, at which the camera is able to provide an image of normal quality. Note that in devices with a night view function (see below), this parameter can be specified in different ways. In some models, minimal illuminance is implied, in which the camera can shoot without backlight and at the same time maintain colour reproduction (as in normal daytime shooting); in others — an "absolute" minimum of light, below which it is impossible to use even the night mode. This point should be clarified according to the official documents of the manufacturer.

Anyway, the lower this indicator, the less light the camera needs to work and the better it handles with shooting at dusk or even at night. Thanks to the use of special technologies, some models are able to work even in complete darkness, with an illumination of 0 lux; this is due to the fact that modern sensors are able to perceive infrared radiation invisible to the eye. However, more often than not, shooting still requires a certain amount of light — at least tenths of a lux. For comparison: an illumination of 0.1 lux approximately corresponds to a lunar night with a “half” phase of the moon, and 1 lux is comparable to a bright full moon in southern latitudes.

Shutter speed

The range of shutter speeds in which the camera is capable of operating during the shooting process.

Initially, shutter speed is the time during which light affects the photosensitive material (film) when shooting a single frame. For digital sensors, this is the period of time during which an image is read from the sensor to build a separate frame. When shooting video, this interval cannot be more than 1/n, where n is the frame rate (see above), but it can be less — for example, shooting at a frame rate of 30 fps and shutter speed of each frame 1/60 s. There are no such restrictions for the photo mode.

Long exposures are good because they allow the sensor to take in more light — accordingly, the “picture” is brighter, which is especially important in low light. At the same time, they increase the likelihood of getting a blurry image — due to the rapid movement of objects in the frame, the operator's hand shaking and other random camera movements that even the stabilization system is unable to compensate for. This effect can be useful for artistic motion blur, especially when shooting video, but in photo mode it is most often undesirable. Fast shutter speeds, on the other hand, allow you to get clear shots, but with less light, and in the case of video, even with the effect of sharp, jerky movements.

Accordingly, different exposure time options will be optimal for each situation, and the wider their range, the more opportunities the came...ra has to adjust to specific conditions.
Sony PXW-Z90 often compared
Sony PXW-X70 often compared