USA
Catalog   /   Home & Renovation   /   Autonomous Power Supply   /   Generators

Comparison EnerSol EPG-5500SEL vs EnerSol EPG-5500SE

Add to comparison
EnerSol EPG-5500SEL
EnerSol EPG-5500SE
EnerSol EPG-5500SELEnerSol EPG-5500SE
Outdated ProductOutdated Product
TOP sellers
Main
Electric starter. Three sockets. Automatic voltage regulator (AVR). Output 12 V.
Fuelpetrol / gaspetrol
Output voltage230 B230 B
Rated power5 kW5 kW
Max. power5.5 kW5.5 kW
Alternatorsynchronoussynchronous
Alternator windingcopper
Engine
ICE type4-stroke4-stroke
Motor typeEnerSol ES-390GEnerSol ES-390G
Engine size390 cm³390 cm³
Power13 hp13 hp
Starter typeelectric starter (key)electric starter (button)
Fuel consumption (50% load)2 l/h
Fuel tank volume25 L26 L
Fuel level indicator
Motor coolingairair
Connection (sockets)
Total number of sockets33
Sockets 230 V16 A x2, 32 A x116 A x2, 32 A x1
Output 12 Vterminalsterminals
Features
Features
automatic voltage regulator (AVR)
display
hour metre
voltmeter
automatic voltage regulator (AVR)
display
hour metre
voltmeter
General
Wheels
Protection levelIP 23IP 23
Noise level95 dB95 dB
Sound level (7 m)75 dB
Dimensions695х530х565 mm695х530х565 mm
Weight83 kg78.4 kg
Added to E-Catalognovember 2023september 2020

Fuel

The type of fuel that the generator's engine runs on.

Gasoline. One of the main types of fuel for internal combustion engines. Gasoline generators are usually cheaper than diesel generators, all other things being equal, but they are more expensive to run due to the higher price of gasoline; in addition, they usually have a shorter resource than diesel ones. Therefore, it is believed that gasoline generators are well suited primarily as a backup power source in case of a power outage.

Diesel. Diesel generators are usually more expensive than their gasoline counterparts; on the other hand, diesel fuel is cheaper than gasoline, so the increased cost may well pay off with regular use. In addition, diesel generators have a longer resource and a larger power range than gasoline ones. This allows them to be used as both backup and main power sources, including at rather "energy-intensive" objects.

Gas. The advantages of gas-fired generators are relatively low noise levels and low emissions. On the other hand, the use of gas as a fuel is associated with certain difficulties: it is necessary to connect to a gas pipeline or regularly replace special cylinders, the fuel system is especially sensitive to leaks, etc. Therefore, there are relatively few such models produced, and most of them are stationary high power generators, in which the mentioned disa...dvantages are covered by the advantages.

- Gasoline / gas. Models capable of using both types of fuel indicated. This gives the user the opportunity to choose the option that best suits a particular situation, and also reduces the likelihood of being left without fuel at the most inopportune moment; on the other hand, such models are more expensive than single-fuel ones. The technical features of gasoline and gas are described in detail above.

Alternator winding

Copper. Copper winding is typical for advanced class generators. The copper alternator is characterized by high conductivity and low resistance. The conductivity of copper is 1.7 times higher than the conductivity of aluminium, such a winding heats up less, and compounds made of this metal endure temperature drops and vibration loads. Among the disadvantages of the copper winding, one can only note the high cost of the alternator. Otherwise, generators with copper winding have high reliability and durability.

— Aluminium. The aluminium winding of the alternator is typical for low-cost-class generators. The main advantages of aluminium are light weight and low price; otherwise, such a winding is usually inferior to copper counterparts. An oxide film is created on the surface of aluminium, it appears everywhere, even in the places of contact soldering. The oxide film undermines the contacts and does not allow the outer protective braid to securely hold the aluminium conductors.

Starter type

Method of starting the electric generator engine. To start the internal combustion engine (petrol or diesel, see "Fuel"), it is necessary to turn the engine shaft in any case; this can be done in two ways:

Manual. With this method of starting, the initial impulse is transmitted to the engine manually - usually the user needs to pull hard on the cable that spins a special flywheel. The simplest in design and cheapest method of starting, from additional equipment it requires only the cable itself with a flywheel. On the other hand, it may require the user to apply significant muscular effort and is poorly suited for high-power units.

Electric starter. With this type of start, the engine shaft is rotated by a special electric motor, which is called a starter; the starter is powered by its own battery. This option for starting the generator power unit is the easiest for the user and requires a minimum of effort. Depending on the implementation of the electric starter, it is usually enough to turn the key in the ignition switch, press a button, turn the handle or rotate a special drum, etc. The power of modern starters is sufficient even for heavy engines, where manual starting is difficult or impossible. Also note that an electric starter is required by definition to use the ATS autostart (see "Features"). On the other hand, additional equipment affects the weight and cost of the unit,...and sometimes quite noticeably. Therefore, such starting systems are used mainly where they cannot be avoided - in the aforementioned heavy equipment, as well as generators with ATS.

Fuel consumption (50% load)

Fuel consumption of a petrol or diesel generator when operating at half power, and for combined models when using petrol (see “Fuel”).

Fuel consumption usually increases with load. However, generator efficiency is not always linear - fuel consumption may vary disproportionately with different loads. In this case, the approximate amount of fuel consumed by the generator when operating at half power (50% of the rated power) is given. Knowing the fuel consumption and tank capacity, you can at least estimate how long one fill-up will last.

Fuel tank volume

The volume of the fuel tank installed in the generator.

Knowing the fuel consumption (see above) and the capacity of the tank, you can calculate the operating time on one gas station (if it is not indicated in the specifications). However, a more capacious tank is also more bulky. Therefore, manufacturers choose tanks based on the general level and "voracity" of the generator — in order to provide an acceptable operating time without a significant increase in size and weight. So in general, this parameter is more of a reference than practically significant.

As for the numbers, in low-power models, tanks are installed for 5 – 10 liters, or even less ; in heavy professional equipment, this figure can exceed 50 liters.

Sound level (7 m)

Sound pressure level in decibels at a distance of 7 m between the noise source and the ear of the equipment operator. Since people do not work in the immediate vicinity of the generator, the parameter will be useful for estimating the noise level at a distance. For example, current European Union regulations require that the sound power of generating sets with a power of more than 2 kW does not exceed 97 dB — at a distance of 7 m, the noise from the generator engine will correspond to a sound pressure of about 72 dB.

Weight

The total weight of the unit - usually excluding fuel; the weight on full tank can be easily determined knowing the tank capacity.

In general, more powerful generators are inevitably heavier, but models with similar characteristics can differ significantly in weight. When assessing these differences and generally choosing an option based on weight, it is worth considering the specifics of the generator's use. So, if the device is often to be moved from place to place - for example, when used "on the road" - it may be worth paying attention to lighter units that are more convenient to transport. However, it is worth considering that the downside of a lightweight design is often an increased cost or a reduced degree of protection. But for stationary use, you can not pay special attention to this parameter - or even the opposite: choose a heavier (and, as a rule, more advanced and functional) option.

Regarding specific figures, it is worth noting that modern generators are generally quite massive. Thus, a small weight for such equipment is considered not only < 20 kg, but even 20-30 kg ; many units weigh 150-200 kg, or even more, and the weight of stationary industrial models is measured in tons.