USA
Catalog   /   TVs & Video   /   Camcorders & Accessories   /   Camcorders

Comparison Panasonic HC-X1 vs Panasonic AG-UX180

Add to comparison
Panasonic HC-X1
Panasonic AG-UX180
Panasonic HC-X1Panasonic AG-UX180
Compare prices 2Compare prices 22
TOP sellers
Featuresprofessionalprofessional
Media typeflash (memory card)flash (memory card)
Sensor
Sensor typeCMOSCMOS
Sensor size1"1"
Effective megapixels9.469.46
Camera lens
Focal length (35mm equivalent)25.4 – 508 mm25.4 – 508 mm
Aperturef/2.8 — f/4.5f/2.8 – f/4.5
Optical zoom20 х20 х
Digital zoom10 х
Image stabilizationoptical
optical / electronic /O.I.S. – Optical Image Stabilizer/
Filter diameter67 mm67 mm
Manual focus
Video shooting
Video resolution4608x2592 px4096x2160 px
Frame frequency24 fps120 fps
Recording formatsMOV, MP4, AVCHD
MOV, MP4, AVCHD /MPEG-4 AVC, H.264/
Video recording speed
200 Mbps, 150 Mbps, 100 Mbps, 50 Mbps /25Mbps, 21Mbps, 17Mbps, 9Mbps, 8Mbps, 5Mbps/
Minimum illuminance0.2 lux0.2 lux
Shutter speed1/25 – 1/8000 с1/24 – 1/8000 с
White balanceAuto / ATW LOCK / 3200K / 5600Kauto, 3200K, 5600K, Preset A, Preset B
Pre-recording (Pre-Rec)
Sound recording
48 kHz/48 bit /2 channels/
Photo
Number of megapixels8.88.8
Max. photo size4096x2160 px4096x2160 px
Screen
Screen size3.5 "3.5 "
Screen resolution1152 K pixels1150 K pixels
Touch screen
Features
Features
viewfinder
hot shoe
built-in speaker
detachable microphone
 
viewfinder
hot shoe
built-in speaker
detachable microphone
direct copy to HDD
Memory and sockets
Memory card support
SDHC, SDXC /uHS-I support/
Memory card slots2
Connectors
 
HDMI
 
AV output
XLR microphone input
headphone jack
USB /3.0/
HDMI
SDI
AV output
XLR microphone input
headphone jack
Battery
Battery typeAG-VBR59
Battery capacity5900 mAh5900 mAh
General
Dimensions (WxHxD)173x195x346 mm
173x195x346 mm /without protruding parts/
Weight
2000 g /without battery and SD card/
2000 g /camera body only/
Color
Added to E-Catalogmay 2017december 2016

Aperture

Aperture of a standard video camera lens.

This parameter describes how much the lens attenuates the light output. Usually it is written as a ratio between the diameter of the active hole and the focal length of the lens, while the first value is taken as one and denoted as f — for example, f/1.8 or f/5.6. Moreover, the smaller the number in such a record, the higher the aperture ratio: for example, in our example, the first option is “lighter” than the second. Also note that most lenses with a variable focal length (see above) also have a variable aperture — in such cases it is indicated by the range from maximum to minimum (from a smaller number to a larger one).

A high aperture ratio is important primarily when shooting in low light conditions: it allows you to capture an image without “lifting up” the sensor sensitivity and without creating additional artifacts in the form of noise, and in the photo shooting mode, you can also work with shorter shutter speeds (which is useful for dynamic scenes). In addition, the higher the aperture, the lower the depth of field and the easier it is to get a blurry background. Note that for simple everyday tasks this parameter does not play a decisive role, but in professional shooting it can be very significant.

Digital zoom

The degree (multiplicity) of zoom provided by the camcorders due to software methods, without changing the focal length of the optics (see "Optical zoom"). The key principle of such an zoom is that part of the image from the sensor is "stretched" to the entire frame. This somewhat worsens the “picture” — after all, not all effective pixels take part in its formation; and the higher the zoom, the worse the quality becomes. On the other hand, this method does not depend on the specifications of the lens and works even with the simplest lenses that do not have zoom lenses, and it is much easier to achieve high magnification than with the optical method.

In modern camcorders, there are two options for using digital zoom. So, among pocket devices (see "Features"), it may be the only available option — not all of them are equipped with zoom lenses. And in full-size models, digital zoom usually complements optical zoom and turns on after the lens reaches the limit of its capabilities.

Note that when shooting 3D (see above), this feature may not be available, and in professional models it is often not used at all.

Image stabilization

An image stabilization method provided in the design of a video camera. The stabilization function itself is designed to compensate for small camera shakes so that they are not noticeable in the image. This is especially true when shooting handheld, and in fact most modern models are designed specifically for such usage. According to the method of work, there are such options:

Optical. A special mechanism with a system of gyroscopes and movable lenses, installed directly in the lens, is responsible for the operation of such stabilization systems. It introduces a correction for all tremors, vibrations, etc., and the “picture” falls on the already stabilized sensor. Optical systems are considered the most advanced and efficient, because. their work allows you to use the entire area of the sensor, fully exploit its capabilities and provide good image quality. Among the shortcomings, it is worth noting the increase in the cost and weight of the cameras, as well as a slight decrease in the reliability of the optics. At the same time, these moments are most often not critical, and stabilizers of this type can be used even in simple and inexpensive models.

— Electronic. Electronic stabilization is carried out due to the fact that not the entire area of the sensor, but only some of it, is involved in the formation of an image for a frame. Simply put, the camera electronics "takes into account" a certain area of the sensor and...transfers the image from it into the frame; and at small displacements, this "area of attention" is also displaced, due to which the visible image remains motionless. The advantages of electronic systems are simplicity of design, lightness, compactness and high reliability; they can be used with even the simplest lenses installed in pocket cameras (see “Features”). Their main disadvantage is the need to reserve a part of the sensor, which reduces the size and resolution of the actually involved area and adversely affects the image quality.

— Optical / electronic. In such systems, both the methods described above are used — both the mechanism in the lens and the reserve on the sensor. This provides extremely high vibration compensation efficiency — the image remains stable even in such conditions in which any single method would be useless. On the other hand, the disadvantages of both options also remain relevant, and the cost of cameras with this feature is quite high.

Video resolution

The maximum video resolution that the camera can capture. Resolution is the size of an image in points (pixels); usually it is written in two numbers, which correspond to the number of pixels horizontally and vertically.

The more pixels in the image — the clearer it is, the better you can see small details on it, however, the size of the video files increases accordingly. In addition, it is worth considering that in order to fully view the footage, you will need a screen of the appropriate resolution — otherwise all the advantages of the image will be negated. And this parameter also significantly affects the price of the device.

The smallest maximum resolution found in modern camcorders is about 720x480; the quality of such a "picture" can be compared with analogue television broadcasting. Resolution 1280x720 corresponds to the HD standard, it can be found among inexpensive TVs and monitors, and 1920x1080 (Full HD) is the most popular option among mid-range and top-class video devices. The maximum resolution used in modern consumer electronics (including camcorders) is 4K, 4096x2160; it is typical for the most advanced devices.

The vast majority of cameras are able to work not only with the maximum resolution, but also with several “more modest” options — for those cases where small file volumes are more important than high resolution.

Frame frequency

The highest frame rate provided by the camera when shooting video. The minimum frequency for normal viewing is the classic 24 fps used in cinema. At the same time, most modern video cameras are capable of providing up to 50 – 60 fps, and even higher frequencies can be used for the slow motion effect.

In fact, this indicator is important primarily when shooting dynamic scenes. The higher the frame rate, the smoother the fast motion will look in the frame, the less jerky it will be and the more pleasant the overall impression of the image will be. The reverse side of this is an increase in the size of recorded files (all other things being equal). Therefore, the frame rate can be made adjustable so that the operator can choose the best option for a particular situation.

Video recording speed

The data transfer speed provided by the camera when recording video. This parameter is also called bitrate (i.e., the number of bits per unit of time). For any file format used for recording, the general rule is that the higher the bitrate, the better the image quality (especially for formats that use lossy compression). On the other hand, high speed have appropriate requirements for the capabilities of the memory cards used — for more details, see "Memory card support"; and it increases the size of the file accordingly. Therefore, many modern camcorders are able to work with different bitrates; this allows you to choose the best option depending on what is more important for you at the moment — maximum quality or the ability to work with a slow card.

At the same time, we note that in terms of quality, this parameter is important mainly for professional video shooting. If you need a camera for amateur purposes, there is no need to look for the maximum bitrate: after all, such models (and memory cards for them) cost accordingly.

Shutter speed

The range of shutter speeds in which the camera is capable of operating during the shooting process.

Initially, shutter speed is the time during which light affects the photosensitive material (film) when shooting a single frame. For digital sensors, this is the period of time during which an image is read from the sensor to build a separate frame. When shooting video, this interval cannot be more than 1/n, where n is the frame rate (see above), but it can be less — for example, shooting at a frame rate of 30 fps and shutter speed of each frame 1/60 s. There are no such restrictions for the photo mode.

Long exposures are good because they allow the sensor to take in more light — accordingly, the “picture” is brighter, which is especially important in low light. At the same time, they increase the likelihood of getting a blurry image — due to the rapid movement of objects in the frame, the operator's hand shaking and other random camera movements that even the stabilization system is unable to compensate for. This effect can be useful for artistic motion blur, especially when shooting video, but in photo mode it is most often undesirable. Fast shutter speeds, on the other hand, allow you to get clear shots, but with less light, and in the case of video, even with the effect of sharp, jerky movements.

Accordingly, different exposure time options will be optimal for each situation, and the wider their range, the more opportunities the came...ra has to adjust to specific conditions.

White balance

Presets and white balance adjustment modes provided by the camera.

White balance is a characteristic that describes the qualities of the lighting of the scene and the distortion that this lighting introduces into the colours perceived by the camera. Its used because modern digital sensors are unable to independently adjust to different light sources, as the human eye does. In fact, this means that the same object shot under lighting with different colour temperatures (for example, under a “warm” incandescent lamp and a “cold” fluorescent lamp) will look different without adjustment. To avoid this, the white balance setting is applied.

The main options for such a setting used in modern cameras are as follows:

— Auto. In accordance with the name, in this mode, the camera electronics independently evaluates the specifics of the illumination of the scene being shot and makes appropriate corrections to the colour reproduction. This adjustment is the most convenient for the operator, because. does not require any additional actions from him — everything is done by automation. At the same time, no such adjustment system is perfect, and does not always provide 100% white balance for the current situation. Therefore, even in the simplest models like pocket ones (see "Features"), this option is rarely the only one, not to mention professional equipment.

— Presets. The ability to select white balance from several options that correspond to...standard shooting conditions — for example, “sunny day”, “cloudy”, “fluorescent lamp”, “incandescent lamp”, etc. Such a system is quite simple even for inexperienced users and at the same time quite reliable and versatile, although its specific capabilities directly depend on the number of presets.

— Manual. Manual white balance setting assumes that the operator himself “tells” the camera which object to consider pure white — based on this, the electronics calculate the lighting characteristics (unlike automatic mode, when the reference object is also determined without user involvement). The easiest way to do this is to use a regular sheet of paper, but the procedure also works with neutral grey objects. Manual mode allows you to very accurately set the white balance for a particular scene, but it requires some time and appropriate skills — and therefore is used mainly in professional camcorders.

— Temperature control. This function allows you to set a specific value for the colour temperature of the light source (in kelvins) — it is this temperature that will correspond to the white balance when shooting. This setup format is faster and more convenient than manual setup, but is not widely used. This is due to the fact that it is well suited only for studio conditions, where the characteristics of each light source are precisely known — in other cases, manual adjustment is usually more reliable.

Pre-recording (Pre-Rec)

Camera has a pre-recording (Pre-Rec) feature.

This feature makes life significantly easier for the operator in conditions where speed of reaction is important — it reduces the risk of missing the moment by being late with the start of the recording. In fact, Pre-Rec allows you to start filming a few seconds (usually 2-3) before the record button is pressed. This is due to the fact that with the pre-recording mode enabled, the camera constantly captures the last few seconds "seen" by the lens in the buffer, and when recording starts, the video from the buffer is attached to the beginning of the recorded file — this creates the effect of a "time machine".
Panasonic HC-X1 often compared
Panasonic AG-UX180 often compared