Dark mode
USA
Catalog   /   Computing   /   Laptops & Accessories   /   Laptops

Comparison MSI Thin GF63 12UC [GF63 12UC-1069XUA] vs Asus TUF Gaming F15 2022 FX507ZC4 [FX507ZC4-HN018]

Add to comparison
MSI Thin GF63 12UC (GF63 12UC-1069XUA)
Asus TUF Gaming F15 (2022) FX507ZC4 (FX507ZC4-HN018)
MSI Thin GF63 12UC [GF63 12UC-1069XUA]Asus TUF Gaming F15 2022 FX507ZC4 [FX507ZC4-HN018]
Outdated ProductOutdated Product
TOP sellers
Typelaptoplaptop
Screen
Screen size15.6 "15.6 "
Screen typeIPSIPS
Surface treatmentmatteanti-glare
Screen resolution1920x1080 (16:9)1920x1080 (16:9)
Refresh rate144 Hz144 Hz
Brightness250 nt
Contrast1000 :1
Colour gamut (sRGB)63 %
Colour gamut (Adobe RGB)47 %
Colour gamut (NTSC)45 %45 %
Adaptive-Sync
CPU
SeriesCore i5Core i5
Model12450H12500H
Code nameAlder Lake (12th Gen)Alder Lake (12th Gen)
Processor cores8 (4P+4E)12 (4P+8E)
Total threads1216
CPU speed1.5 GHz1.8 GHz
TurboBoost / TurboCore frequency4.4 GHz4.5 GHz
CPU TDP45 W45 W
3DMark0613461 score(s)
Passmark CPU Mark17878 score(s)21653 score(s)
RAM
RAM16 GB16 GB
Max. RAM64 GB32 GB
RAM typeDDR4DDR4
RAM speed3200 MHz4800 MHz
Slots22
Graphics card
Graphics card typededicateddedicated
Graphics card seriesNVIDIA GeForceNVIDIA GeForce
Graphics card modelRTX 3050RTX 3050
Video memory4 GB4 GB
Memory typeGDDR6GDDR6
GPU TDP80 W
Advanced Optimus
3DMark0639512 points39512 points
3DMark Vantage P43216 points43216 points
Storage
Drive typeSSD M.2 NVMeSSD M.2 NVMe
Drive capacity512 GB512 GB
M.2 drive interfacePCI-E 4.0 4xPCI-E 3.0 4x
M.2 drive size22x80 mm22x80 mm
Additional 2.5" slot
Additional M.2 connector1
Addittional M.2 connectors interfacePCI-E 3.0 4x
Additional M.2 drive size22x80 mm
Connections
Connection ports
HDMI
 
HDMI
v 2.0b
Card reader
USB 3.2 gen132
USB C 3.2 gen11 pc
USB C 3.2 gen21 pc
USB41
Thunderbolt interfacex1 v4
Alternate Mode
Monitors connection23
LAN (RJ-45)1 Gbps1 Gbps
Wi-FiWi-Fi 6 (802.11ax)Wi-Fi 6 (802.11ax)
Bluetoothv 5.2v 5.2
Multimedia
Webcam1280x720 (HD)1280x720 (HD)
Camera shutter
Speakers22
Audio decodersDolby Atmos
Security
kensington / Noble lock
kensington / Noble lock
Keyboard
BacklightredRGB
Key designisland typeisland type
Num block
Additional keys4
Input devicetouchpadtouchpad
Battery
Battery capacity3620 mAh
Battery capacity52 W*h56 W*h
Battery voltage15.48 V
Powered by USB-C (Power Delivery)
Fast charge
Charging time50% in 30 min
Power supply Included120 W200 W
General
Preinstalled OSDOSno OS
MIL-STD-810 Military Standard
Materialaluminium / plasticaluminium / plastic
Dimensions (WxDxT)359x254x22 mm354x251x25 mm
Weight1.86 kg2.2 kg
Color
Added to E-Catalognovember 2023august 2023

Surface treatment

Glossy. A glossy surface improves the overall picture quality: other things being equal, the picture on such a screen looks brighter and more colorful than on a matte one. On the other hand, pollution is very noticeable on such a surface, and in bright external lighting, a lot of glare appears on it, which can greatly interfere with viewing. Therefore, instead of the classic gloss, laptops are increasingly using an anti-reflective version of such a coating (see below). Nevertheless, this option still does not lose popularity: it is somewhat cheaper than the “anti-glare”, and in soft, relatively dim lighting, it can even provide a more pleasing image to the eye.

Matte. Matte finish is inexpensive and does not form glare even from fairly bright lighting. On the other hand, the picture on such a screen is noticeably dimmer than on a similar glossy display. However, this moment can be compensated by various design solutions (primarily a good margin of brightness); so this option can be found in all categories of modern laptops — from low-cost models for working with documents to top gaming configurations.

Glossy (anti-glare). A variation on the glossy finish described above, designed to reduce glare from external light sources. Such screens really glare noticeably less than traditional glossy ones (or even do not give glare at all); at the same time, in...terms of image quality, they are at least superior to matte ones. So it is this type of coating that is most popular nowadays.

Brightness

The maximum brightness that a laptop screen can provide.

The brighter the ambient light, the brighter the laptop screen should be, otherwise the image on it may be difficult to read. And vice versa: in dim ambient light, high brightness is unnecessary — it greatly burdens the eyes (however, in this case, modern laptops provide brightness control). Thus, the higher this indicator, the more versatile the screen is, the wider the range of conditions in which it can be effectively used. The downside of these benefits is an increase in price and energy consumption.

As for specific values, many modern laptops have a brightness of 250 – 300 nt and even lower. This is quite enough for working under artificial lighting of medium intensity, but in bright natural light, visibility may already be a problem. For use in sunny weather (especially outdoors), it is desirable to have a brightness margin of at least 300 – 350 nt. And in the most advanced models, this parameter can be 350 – 400 nt and even more.

Contrast

The contrast of the screen installed in the laptop.

Contrast is the largest difference in brightness between the lightest white and darkest black that can be achieved on a single screen. It is written as a fraction, for example, 560:1; while the larger the first number, the higher the contrast, the more advanced the screen is and the better the image quality can be achieved on it. This is especially noticeable with large differences in brightness within a single frame: with low contrast, individual details located in the darkest or brightest parts of the picture may be lost, increasing the contrast allows you to eliminate this phenomenon to a certain extent. The flip side of these benefits is an increase in cost.

Separately, we emphasize that in this case only static contrast is indicated — the difference provided within one frame in normal operation, at constant brightness and without the use of special technologies. For advertising purposes, some manufacturers may also provide data on the so-called dynamic contrast — it can be measured in very impressive numbers (seven-digit or more). However, you should focus primarily on static contrast — this is the basic characteristic of any display.

As for specific values, even in the most advanced screens, this indicator does not exceed 2000: 1. But in general, modern laptops have a rather low contrast ratio — it is assumed that for tasks that require more advanced image characteristics, it is more...reasonable to use an external screen (monitor or TV).

Colour gamut (sRGB)

The colour gamut of the laptop matrix according to the Rec.709 colour model or according to sRGB.

Colour gamut describes the range of colours that can be displayed on the screen. It is indicated as a percentage, but not relative to the entire variety of visible colours, but relative to the conditional colour space (colour model). This is due to the fact that no modern screen is able to display all the colours visible to humans. However, the larger the colour gamut, the wider the screen's capabilities, the better its colour reproduction.

Specifically, sRGB and Rec.709 are the most popular of today's colour models; they have the same range and differ only in the scope (sRGB is used in computers, Rec. 709 is used in HDTV). Therefore, the closer the colour gamut is to 100%, the more accurately the colours on the screen will match the colours that were originally intended by the creator of the film, game, etc. At the same time, note that such accuracy is not particularly needed in everyday use — it critical only for professional work with colour; and even in such cases, it is more convenient to buy a separate monitor with a wide colour gamut for a laptop, rather than looking for a laptop with a high-quality (and, accordingly, expensive) matrix.

Colour gamut (Adobe RGB)

The colour gamut of the laptop matrix according to the Adobe RGB colour model.

Colour gamut describes the range of colours that can be displayed on the screen. It is indicated as a percentage, but not relative to the entire variety of visible colours, but relative to the conditional colour space (colour model). This is due to the fact that no modern screen is able to display all the colours visible to humans. However, the larger the colour gamut, the wider the screen's capabilities, the better its colour reproduction.

The Adobe RGB colour model was originally developed for print applications; the range of colours covered by it corresponds to the capabilities of professional printing equipment. Therefore, theoretically, the extensive coverage of this model will be useful to those involved in the design and layout of high-end printed products. However most laptop screens have very limited Adobe RGB values, rarely exceeding 74%; however, you can also find high-end models where this figure approaches 100%. Of course, the cost of such laptops will also be appropriate; therefore, it makes sense to pay attention to them, first of all, when the ability to work with colour “on the go” is of key importance. If this is to be done in one place, it may be more justified to buy a separate monitor with a wide colour gamut (especially since a monitor with such characteristics is easier to find than a laptop).

Adaptive-Sync

Laptop screen support for VESA Adaptive-Sync technology.

The feature aims to synchronize the refresh rate of the display with the frame rate of the GPU to reduce latency, minimize artifacts, and eliminate visual tearing in the image. Adaptive-Sync-certified screens should run at refresh rate of 120Hz by default, and the frame rate should be able to drop to 60Hz. The actual response time of such displays should be less than 5 ms.

It is important to note that VESA Adaptive-Sync technology is only available for DisplayPort 1.2a or higher.

Model

The specific model of the processor installed in the laptop, or rather, the processor index within its series (see above). Knowing the full name of the processor (series and model), you can find detailed information on it (up to practical reviews) and clarify its capabilities.

Processor cores

The number of cores in the laptop CPU.

The core is a part of the CPU designed to process one thread of instructions (and sometimes more, for such models, see "Number of threads"). Nowadays, in laptops you can find dual-core, quad-core, six-core, eight-core, ten-core, 12-core, 14-core CPUs. Also note that recently configurations with different types of cores as part of a single CPU are gaining popularity. Such chips are built on a hybrid architecture that combines high performance and energy-efficient cores. They operate at different clock speeds, have different amounts of pre-installed cache memory and are designed to solve different problems. In particular, such CPUs are found in Intel CPUs (from the 12th generation) and Apple.

Theoretically, more cores means higher performance, especially in parallel computing tasks or when processing multiple resource-intensive tasks at the same time. However, in practice this is true only all else being equal – that is, with a similar microarchitecture, clock frequency, cache volumes and other key parameters. Modern CPUs can vary greatly on these parameters – in itself, a greater number of cores does not mean superiority. This is especially true for dual- and quad-core chips: a mobil...e-level CPU (for example, Snapdragon, see "CPU series") with 4 cores may well be inferior in capabilities to a dual-core desktop series chip (like Core i3 or i5, which are often used in universal laptops with the "optimal" set of specifications for different tasks). When evaluating CPUs with two or four cores, it is necessary to look, first of all, at the general set of characteristics. But the presence of six, eight or more cores is almost certainly a sign of a powerful CPU. Such equipment is typical mainly for advanced gaming and professional laptops.

Total threads

The number of threads supported by the laptop processor.

A thread is a sequence of instructions executed by a processor. Initially, each processor core was designed for one such sequence, and the number of threads was equal to the number of cores. However, in modern CPUs, multithreading technologies are increasingly being used, which allow loading each core with two instruction sequences at once. Such technologies have different names for different manufacturers, but the principle of their operation is the same: during the inevitable pauses in the execution of one of the threads, the kernel does not idle, but works with a different sequence. Accordingly, the total number of threads in such processors is twice the number of cores; such a scheme of work significantly increases productivity (although, of course, it also affects the cost).
MSI Thin GF63 12UC often compared
Asus TUF Gaming F15 (2022) FX507ZC4 often compared