USA
Catalog   /   Computing   /   Laptops & Accessories   /   Laptops

Comparison Lenovo ThinkBook 15 G4 ABA [15 G4 ABA 21DL003TRA] vs Lenovo ThinkBook 15 G3 ACL [15 G3 ACL 21A40172RA]

Add to comparison
Lenovo ThinkBook 15 G4 ABA (15 G4 ABA 21DL003TRA)
Lenovo ThinkBook 15 G3 ACL (15 G3 ACL 21A40172RA)
Lenovo ThinkBook 15 G4 ABA [15 G4 ABA 21DL003TRA]Lenovo ThinkBook 15 G3 ACL [15 G3 ACL 21A40172RA]
Outdated ProductOutdated Product
TOP sellers
Typelaptoplaptop
Screen
Screen size15.6 "15.6 "
Screen typeIPSIPS
Surface treatmentanti-glareanti-glare
Screen resolution1920x1080 (16:9)1920x1080 (16:9)
Refresh rate60 Hz60 Hz
Brightness300 nt300 nt
Contrast800 :1800 :1
Colour gamut (NTSC)45 %45 %
TÜV Rheinland certificate
CPU
SeriesRyzen 7Ryzen 7
Model5825U5700U
Code nameBarcelo (Zen 3)Lucienne (Zen 2)
Processor cores88
Total threads1616
CPU speed2 GHz1.8 GHz
TurboBoost / TurboCore frequency4.5 GHz4.3 GHz
CPU TDP25 W25 W
3DMark0611662 score(s)
Passmark CPU Mark18419 score(s)15856 score(s)
SuperPI 1M24.58 с
RAM
RAM16 GB16 GB
Max. RAM40 GB40 GB
RAM typeDDR4DDR4
RAM speed3200 MHz3200 MHz
Slotsbuilt-in + 1 slotbuilt-in + 1 slot
Graphics card
Graphics card typeintegratedintegrated
Graphics card seriesAMD RadeonAMD Radeon
Graphics card modelVega 8Vega 8
3DMark0625886 points25886 points
3DMark Vantage P21299 points21299 points
Storage
Drive typeSSD M.2 NVMeSSD M.2 NVMe
Drive capacity512 GB512 GB
M.2 drive interfacePCI-E 4.0 4xPCI-E 3.0 4x
M.2 drive size22x42 mm22x42 mm
Additional M.2 connector11
Addittional M.2 connectors interfacePCI-E 3.0 4xPCI-E 3.0 2x
Additional M.2 drive size22x80 mm22х80 mm
Connections
Connection ports
HDMI
 
HDMI
v 1.4b
Card reader
 /SD/MMC/
 /SD/MMC/
USB 3.2 gen122
USB C 3.2 gen222
Alternate Mode
Monitors connection33
LAN (RJ-45)1 Gbps1 Gbps
Wi-FiWi-Fi 6 (802.11ax)Wi-Fi 6 (802.11ax)
Bluetoothv 5.1v 5.1
Multimedia
Webcam1920x1080 (Full HD)1280x720 (HD)
Camera shutter
Speakers22
Security
fingerprint scanner /combined with power button/
kensington / Noble lock
fingerprint scanner /combined with power button/
kensington / Noble lock
Keyboard
Backlightwhitewhite
Key designisland typeisland type
Num block
Additional keys4
Waterproof
Input devicetouchpadtouchpad
Battery
Battery capacity45 W*h45 W*h
Operating time8 h7.5 h
Powered by USB-C (Power Delivery)
Fast charge
Charging time50% in 30 min50% in 30 min
Power supply Included65 W65 W
DC charging portis absentis absent
General
Preinstalled OSno OSno OS
Docking station connection
MIL-STD-810 Military Standard
Materialaluminium / plasticaluminium / plastic
Dimensions (WxDxT)357x235x19 mm357x235x19 mm
Weight1.7 kg1.7 kg
Color
Added to E-Catalogmay 2023february 2023

Model

The specific model of the processor installed in the laptop, or rather, the processor index within its series (see above). Knowing the full name of the processor (series and model), you can find detailed information on it (up to practical reviews) and clarify its capabilities.

Code name

The code name for CPU installed in the laptop.

This parameter characterizes, first of all, the generation to which the processor belongs, and the microarchitecture used in it. At the same time, chips with different code names can belong to the same microarchitecture/generation; in such cases, they differ in other parameters - general positioning, belonging to certain series (see above), the presence / absence of certain specific functions, etc.

Nowadays, the following code names are relevant in Intel processors: Coffee Lake, Comet Lake, Ice Lake, Tiger Lake, Jasper Lake, Alder Lake, Raptor Lake (13th Gen), Alder Lake-N, Raptor Lake (14th Gen), Meteor Lake (Series 1), Raptor Lake (Series 1), Lunar Lake (Series 2). For AMD, the list looks like this: Zen 2 Renoir, Zen 2 Lucienne, Zen 3 Cezanne, Zen 3 Barcelo, Zen 3+ Rembrandt, Zen 3+ Rembrandt R, Zen 2 Mendocino, Zen 3 Barcelo R, Zen 4 Dragon Range, Zen 4 Phoenix Zen 4 Hawk Point, Zen 5 Strix Point. Detailed data on different code names can be found in special sources.

CPU speed

The clock speed of the processor installed in the laptop (for multi-core processors, the frequency of each individual core).

Theoretically, a higher clock speed has a positive effect on performance, as it allows the processor to perform more operations per unit of time. However, in fact, the capabilities of the CPU depend on a number of other characteristics — primarily on the series to which it belongs (see above). It even happens that of the two chips, the more performant in the overall result is the slower one. With this in mind, it makes sense to compare by clock frequency only processors of the same series, and ideally, also of the same generation; and the laptop as a whole should be judged by the complex characteristics of the system, as well as by the results of tests (see below).

TurboBoost / TurboCore frequency

Processor clock speed achieved in TurboBoost or TurboCore "overclocking" mode.

Turbo Boost and Turbo Core technologies are used by different manufacturers (Intel and AMD, respectively), but they have the same principle of operation: load distribution from more loaded processor cores to less loaded ones to improve performance. The "overclocking" mode is characterized by an increased clock frequency, and it is indicated in this case.

For more information about clock speed in general, see the relevant paragraph above.

3DMark06

The result shown by the laptop processor in 3DMark06.

This test is primarily focused on testing performance in games — in particular, the ability of the processor to process advanced graphics and artificial intelligence elements. Test scores are reported as scores; the higher this number, the higher the performance of the tested chip. Good 3DMark06 results are especially important for gaming laptops.

Passmark CPU Mark

The result shown by the laptop processor in the Passmark CPU Mark test.

Passmark CPU Mark is a comprehensive test that is more detailed and reliable than the popular 3DMark06 (see above). It checks not only the gaming capabilities of the CPU, but also its performance in other modes, based on which it displays the overall score; this score can be used to fairly reliably evaluate the processor as a whole (the more points, the higher the performance).

SuperPI 1M

The result shown by the laptop processor in the SuperPI 1M test.

The essence of this test is to calculate the number "pi" to the millionth decimal place. The time spent on this calculation is the final result. Accordingly, the more powerful the processor, the smaller the result will be (this SuperPI 1M is fundamentally different from many other tests).

M.2 drive interface

The connection interface used by the M.2 SSD installed in the laptop (see "Drive type").

One of the features of the M.2 connector and drives for it is that they can use two different connection interfaces: PCI-E (in one form or another) or SATA. We emphasize that this paragraph indicates the data of the SSD module; the connector itself may provide other interface options, including more advanced ones — see "M.2 connector interface" (for example, a drive with a PCI-E 3.0 2x connection can be placed in a connector that also supports the faster PCI-E 4.0 4x). However, anyway, the connection connector usually allows you to realize all the features of the installed drive; so this item allows you to quite reliably evaluate the capabilities of the standard M.2 module.

As for specific interfaces, nowadays you can mainly find the following options:

— SATA 3. The SATA interface was originally designed for traditional hard drives. The third version of this interface is the latest; it provides data transfer rates up to 600 Mbps. This is significantly less than PCI-E, and in general, very little by the standards of SSD drives. Therefore, M.2 connection using SATA is typical mainly for low-cost entry-level modules. However, even these media are generally faster than most HDDs.

— PCI-E. Universal interface for connecting internal peripherals. Provides generally faster speeds than SATA, making it better suited for SSD modules: theoretically, PC...I-E allows you to realize the full potential of SSDs, even the fastest. In fact, the supported data transfer rate may be different — depending on the version of the interface and the number of lines (data transmission channels). Here are the options most relevant for modern laptops:
  • PCI-E 3.0 2x. Connection using 2 lanes PCI-E version 3.0. This version provides speeds of about 1 GB/s per line; respectively, two lines give a maximum of just under 2 GB / s.
  • PCI-E 3.0 4x. Connection using 4 lanes PCI-E version 3.0. Provides a maximum speed of about 4 GB / s.
  • PCI-E 4.0 4x. Connection using 4 lanes PCI-E version 4.0. In this version, the throughput, compared to PCI-E 3.0, has been doubled — thus, 4 lines give a maximum speed of about 8 MB / s.
Note that in the case of M.2 connectors, different PCI-E variations are usually quite compatible with each other — except that the connection speed when working with a "non-native" connector will be limited by the capabilities of the slowest component. For example, when connecting a PCI-E 3.0 4x SSD module to a PCI-E 3.0 2x slot, this speed will correspond to the capabilities of the connector, and when connected to PCI-E 4.0 4x, to the capabilities of the drive.

Addittional M.2 connectors interface

A connection interface supported by the laptops optional M.2 connector (see above). Recall that this connector is initially free; so this information allows you to evaluate the compatibility with additional components and, accordingly, the possibility of upgrading.

Two main types of interfaces can be implemented through the M.2 connector: SATA and PCI-E. SATA was originally created for hard drives, its support is inexpensive, but the speed of such a connection does not exceed 600 MB / s — this is very low by the standards of SSDs and other modern peripherals. Therefore, in the additional connector (s) M.2, one or another type of PCI-E is most often implemented. This interface has several variations that differ in version, number of lines and, as a result, speed; Here are the options most relevant for modern laptops:

— PCI-E 3.0 2x. Connecting using 2 lanes of PCI-E version 3.0 gives a maximum speed of just under 2 GB / s.
— PCI-E 3.0 4x. Connection using 4 lanes PCI-E version 3.0. Provides a maximum speed of about 4 GB / s.
— PCI-E 4.0 4x. Connected using 4 lanes PCI-E version 4.0, throughput is about 8 Mbps.
— PCI-E. Connection via PCI-E, for which the manufacturer did not specify the details (version and number of lines).

It is worth noting here that in the case of M.2, different versions of PCI-E are quite compatible with each other (except that the speed of work will be limited by the capabilities of the slower side —...the drive or connector). Therefore, even if the specific capabilities of such a connector are not specified, this is generally not critical (these capabilities will not hurt to clarify unless if high performance is fundamentally important to you).
Lenovo ThinkBook 15 G4 ABA often compared