USA
Catalog   /   Climate, Heating, Water Heating   /   Heating & Cooling   /   Dehumidifiers

Comparison MYCOND Roomer 20 vs MYCOND Roomer 12

Add to comparison
MYCOND Roomer 20
MYCOND Roomer 12
MYCOND Roomer 20MYCOND Roomer 12
Outdated ProductOutdated Product
TOP sellers
Main functionhouseholdhousehold
Typecondensingcondensing
Installationfloorfloor
Specs
Capacity20 L/day11.5 L/day
Power consumption330 W250 W
Recommended room area40 m²25 m²
Power supplysingle-phase (230 V)single-phase (230 V)
Controlstouch controlstouch controls
Voice assistantytn lfyys[ytn lfyys[
Air flow180 m³/h100 m³/h
Operating temperature range5 – 32 °C5 – 32 °C
Condensate tank volume5 L2 L
RefrigerantR134AR134A
Features
Functions
hygrostat
fan speed adjustment
ionizer
timer
air filter
tank indicator
auto shutdown
hygrostat
fan speed adjustment
ionizer
timer
air filter
tank indicator
auto shutdown
General specs
Wheels
Display
Dimensions577x350x217 mm490x310x200 mm
Weight13.9 kg11.5 kg
Added to E-Catalognovember 2019november 2019

Capacity

The nominal capacity of the dehumidifier is the maximum amount of moisture that the unit can remove from the air per day.

For efficient operation, the capacity of the dehumidifier must be no less than the amount of excess moisture that accumulates in the room during the same time. This amount can be calculated using special formulas or calculator programs. However, the results of such calculations are quite approximate, but they can be used in the selection, and for a full guarantee it is worth taking a performance margin of at least 10–20%. If desired, this margin can be more; but note that high performance significantly affects the price, dimensions and energy consumption of the dehumidifier.

As for specific values, entry-level models for small spaces provide less than 25 L/day. Indicators of 26 – 50 L/day can be called average, 51 – 75 L/day — above average; there are also many powerful professional units with a capacity of more than 75 L/day.

Power consumption

Power consumption of the dehumidifier in normal operation.

From a practical point of view, this characteristic is secondary — manufacturers select power in such a way as to provide the necessary operating parameters (performance, air flow, etc.), and when choosing, you should focus primarily on these parameters. However, certain practical points also depend on the power consumption. Firstly, only models of less than 3-3.5 kW can be connected to ordinary household outlets; higher power consumption will require either a 400 V supply (see Power supply) or a direct connection to the panel. However, even power of more than 2 kW is rare in modern dehumidifiers — for most of these devices, the energy consumption is in the range from 500 to 1000 W or from 1000 to 2000 W, and in the most modest models it does not exceed 500 W at all. Secondly, power data may be required to calculate the load on the power grid. Such a need arises mainly for the selection of additional equipment — circuit breakers, AVR, UPS, etc.

Also, note that models with similar performance may differ in power consumption. However, a more economical dehumidifier often costs more, but with regular use, this difference pays off by reducing energy costs.

Recommended room area

The area of the room for which the device is designed. It is the maximum area that this model can effectively handle: the use in smaller rooms is quite acceptable, but the device simply does not have enough performance for a larger space. Also, note that the area is indicated based on a ceiling height of 2.5-3 m — the standard value for residential premises; with a higher ceiling height, the effective area decreases, and it can be recalculated using special formulas.

When choosing by area, it is worth taking a certain margin, but it should not be too large — otherwise, the device will be unnecessarily powerful, bulky and expensive.

Air flow

The maximum amount of air that a dehumidifier can pass through in an hour.

The choice for this parameter depends on the size of the room. It is believed that for effective operation, the dehumidifier must drive through itself an amount of air in an hour that exceeds the volume of the room by 3-4 times; and you can determine the volume of the room by multiplying the area by the height of the ceiling. For example, a 12 m² room with 2.5 m ceilings will hold 12*2.5=30 m³ of air; accordingly, for efficient operation in such a room, a dehumidifier with a capacity of 30*3=90 m³/h, and preferably 30*4=120 m³/h, is required. It is quite possible to choose a unit with a margin for airflow — unless you need to take into account that an increase in performance affects the price and energy consumption. But a too-low value of this parameter is undesirable: such a dehumidifier simply cannot effectively cope with its task.

As for specific figures, relatively low-power models produce up to 250 m³/h, equipment for 251–500 m³/h and 501–750 m³/h can be attributed to the average level, and many units are capable of processing more than 750 m³/h.

Condensate tank volume

The volume of the tank for collecting condensate (moisture removed from the air), provided in the design of the dehumidifier.

The larger the condensate tank, the slower it will fill up and the less often it will have to be emptied. It is especially important for high-performance units (see above). On the other hand, the volumetric tank has the appropriate dimensions, which affects the dimensions of the entire dryer. When evaluating the relationship between tank capacity and dehumidifier performance, note that the device rarely operates at full capacity. See "Dehumidification capacity" for more on this; here we note that if, for example, a dehumidifier with parameter of 24 L/day has a tank of 4 litres, this does not mean that the tank will necessarily be filled to the top every 4 hours. An alternative to tanks is the use of permanent condensate drainage systems; see "Features" for details.
MYCOND Roomer 20 often compared
MYCOND Roomer 12 often compared