Dark mode
USA
Catalog   /   Climate, Heating, Water Heating   /   Heating & Boilers   /   Boilers

Comparison Romstal Habitat EKCO.LN2-8-ROM 8 kW
230 V
vs Protherm Skat 9KE/14 9 kW
230 V / 400 V

Add to comparison
Romstal Habitat EKCO.LN2-8-ROM 8 kW 230 V
Protherm Skat 9KE/14 9 kW 230 V / 400 V
Romstal Habitat EKCO.LN2-8-ROM 8 kW
230 V
Protherm Skat 9KE/14 9 kW
230 V / 400 V
Outdated ProductOutdated Product
User reviews
0
0
0
4
TOP sellers
Main
This is an updated series of Skat. The design and layout of the boiler has been slightly changed. New control panel. Built-in eBUS allows connection of Protherm Thermolink P, Protherm Exacontrol 7, Vaillant eRELAX, Vaillant multiMATIC VRC 700/6 thermostats
Energy sourceelectricityelectricity
Installationwallwall
Typesingle-circuit (heating only)single-circuit (heating only)
Heating area64 m²72 m²
Technical specs
Heat output8 kW9 kW
Min. heat output3 kW
Power supply230 V230 V / 400 V
Rated current16 А
Coolant min. T20 °С25 °С
Coolant max. T85 °С85 °С
Heating circuit max. pressure3 bar3 bar
Consumer specs
Outdoor temperature sensor
Circulation pump
Control buseBus
Boiler specs
Efficiency99.5 %
Combustion chamberno chamberno chamber
Expansion vessel capacity6 L8 L
Connections
Central heating flow3/4"3/4"
Central heating return3/4"3/4"
Safety
Safety systems
water overheating
water circulation failure
 
water overheating
water circulation failure
frost protection
More specs
Dimensions (HxWxD)710x418x251 mm740x410x310 mm
Weight17.2 kg24 kg
Added to E-Catalogjune 2022may 2019

Heating area

A very conditional parameter that slightly characterizes the purpose based on the size of the room. And depending on the height of the ceilings, layout, building design and equipment, actual values may differ significantly. However, this item represents the maximum recommended area of the room that the boiler can effectively heat. However, it is worth considering that different buildings have different thermal insulation properties and modern buildings are much “warmer” than 30-year-old and especially 50-year-old houses. Accordingly, this item is more of a reference nature and does not allow us to fully assess the actual heated area. There is a formula by which you can derive the maximum heating area, knowing the useful power of the boiler and the climatic conditions in which it will be used; For more information on this, see "Useful Power". In our case, the heating area is calculated using the formula “boiler power multiplied by 8”, which is approximately equivalent to use in houses that are several decades old.

Heat output

It is the maximum useful power of the boiler.

The ability of the device to heat a room of a particular area directly depends on this parameter; by power, you can approximately determine the heating area, if this parameter is not indicated in the specs. The most general rule says that for a dwelling with a ceiling height of 2.5 – 3 m, at least 100 W of heat power is needed to heat 1 m2 of area. There are also more detailed calculation methods that take into account specific factors: the climatic zone, heat gain from the outside, design features of the heating system, etc.; they are described in detail in special sources. Also note that in dual-circuit boilers (see "Type"), part of the heat generated is used to heat water for the hot water supply; this must be taken into account when evaluating the output power.

It is believed that boilers with a power of more than 30 kW must be installed in separate rooms (boiler rooms).

Min. heat output

The minimum heat output at which the heating boiler can operate in constant mode. Operation at minimum power allows you to reduce the number of on-and-off cycles that adversely affect the durability of heating boilers.

Power supply

The type of electrical supply required for normal operation of the boiler. Power supply may be required not only for electric models but also for other types of boilers (see "Power supply") — in particular, for the operation of control automation. Connection options can be:

230 V. Work from a household system with a voltage of 230 V. At the same time, models with a power consumption of up to 3.5 kW can be connected to a standard outlet, but for high consumption devices, you need to connect directly to the distribution board. Many of the electric boilers with this connection also allow operation from 400 V (see below).

400 V. Operation from a three-phase system with a voltage of 400 V. This power supply is suitable for boilers with any power consumption. However, it is not as common as 230 V: in particular, it may be difficult to use it in a residential area. Therefore, this option is provided mainly in high-power devices for which a 230 V power supply is not suitable.

— Autonomous work. Work in completely autonomous mode, without an electricity connection. This format of operation is found in all boilers that do not use electrical heating (see "Energy source"), except for purely liquid fuel ones — in them, electricity is necessary for the operation of the fuel supply systems.

Rated current

The current consumed by the electric boiler (see "Power source") during normal operation.

This parameter directly depends on the power. It is required primarily for organizing the connection: wiring and automation must safely deal with the current consumed by the unit.

Coolant min. T

The minimum operating temperature of the heat medium in the boiler system when operating in heating mode.

Outdoor temperature sensor

The outdoor temperature sensor allows you to monitor the outdoor weather conditions and automatically adjust the operation of the boiler to them — increase the heating power when the outside temperature drops and decrease it when it rises.

Control bus

The control bus with which the boiler is compatible.

The control bus is a communication channel through which control and controlled devices can exchange data. Support for such a channel greatly simplifies the connection of thermostats and other control automation. It is enough that such devices are compatible with the same bus as the boiler. In addition, many types of tyres allow you to create very extensive monitoring and control systems and easily integrate various devices into them, including heating boilers.

In modern heating technology, the most popular tyres are OpenTherm, eBus, Bus BridgeNet and EMS. Here are their key features:

— OpenTherm. A fairly simple standard with modest functionality: it allows only a direct connection between the control and the controlled device and is not designed to create extensive systems. On the other hand, this bus has quite advanced capabilities for controlling heaters: in particular, it allows you to control the temperature not just by turning the boiler on/off, but by changing the power of the gas burner. This mode of operation contributes to saving fuel/energy, as well as reduces wear and increases the life of the heater; and in many cases, a system of two devices (boiler and thermostat) is quite enough for effective heating control. At the same time, the OpenThe...rm standard is simple and inexpensive to implement, which makes it extremely popular in modern boilers. For several reasons, it is mainly used in gas models.

— eBUS. A control bus that has some pretty impressive features. Allows you to combine up to 25 control and 228 controlled devices in one system, with a data transmission distance between individual components up to 1 km. At the same time, eBUS is an open standard, its implementation (at least within the framework of the main functions) is freely available to everyone. And although nowadays eBUS support can be found mainly in Protherm and Vaillant equipment. However, in boilers, this is the second most popular type of control bus, after OpenTherm. It is mainly due to slightly higher cost, while advanced eBUS capabilities are not needed as often.

— Bus BridgeNet. Hotpoint-Ariston proprietary development, used exclusively in boilers of this brand. One of the advantages is a high degree of automation: the user only needs to set the temperature parameters (and for different zones, you can choose custom options) and, if desired, a weekly programme, the rest of the necessary calculations and adjustments will be carried out by the system. However, such features are available only in special control devices such as temperature controllers; in boilers, Bus BridgeNet support usually means only compatibility with such automation.

— EMS. A control bus used primarily in Bosch and Buderus equipment. In general, it is characterized by wide functionality, a high degree of automation and the ability to create extensive control systems. However, note that nowadays you can find both the original EMS and the modified EMS Plus, and these standards are not initially compatible with each other (although support for both of them may well be provided in some devices). So the specific version of the EMS bus should be specified separately. We note that in Bosch devices there is mainly an original version, and in Buderus devices — EMS Plus (although exceptions are possible there and there).

Efficiency

The efficiency of the boiler.

For electric models (see "Energy source"), this parameter is calculated as the ratio of net power to consumed; in such models, indicators of 98 – 99% are not uncommon. For other boilers, the efficiency is the ratio of the amount of heat directly transferred to the water to the total heat amount released during combustion. In such devices, the efficiency is lower than in electric ones; for them, a parameter of more than 90% is considered good. An exception is gas condensing boilers (see the relevant paragraph), where the efficiency can even be higher than 100%. There is no violation of the laws of physics here. It is a kind of advertising trick: when calculating the efficiency, an inaccurate method is used that does not take into account the energy spent on the formation of water vapour. Nevertheless, formally everything is correct: the boiler gives out more thermal energy to the water than is released during the combustion of fuel since condensation energy is added to the combustion energy.
Protherm Skat 9KE/14 often compared