Dark mode
USA
Catalog   /   Climate, Heating, Water Heating   /   Heating & Boilers   /   Boilers

Comparison E.C.A. Proteus Premix 24 HM 24 kW vs Immergas Mini EOLO 24-3 E 24 kW

Add to comparison
E.C.A. Proteus Premix 24 HM 24 kW
Immergas Mini EOLO 24-3 E 24 kW
E.C.A. Proteus Premix 24 HM 24 kWImmergas Mini EOLO 24-3 E 24 kW
Outdated Product
from $562.64 up to $668.00
Outdated Product
TOP sellers
Main
Ability to connect to smart thermostats controlled from a smartphone
Energy sourcegasgas
Installationwallwall
Typedual-circuit (heating and DHW)dual-circuit (heating and DHW)
Heating area192 m²180 m²
Condensing
Technical specs
Heat output24 kW24 kW
Power supply230 V230 V
Power consumption135 W130 W
Rated current0.66 А
Coolant min. T30 °С35 °С
Coolant max. T80 °С85 °С
Heating circuit max. pressure3 bar3 bar
DHW circuit max. pressure10 bar10 bar
Consumer specs
DHW min. T30 °С30 °С
DHW max. T65 °С60 °С
Performance (ΔT=25°C)11.5 L/min
"Summer" mode
Circulation pump
Boiler specs
Efficiency108 %93.6 %
Combustion chamberclosed (turbocharged)closed (turbocharged)
Flue diameter60/100, 80/125 mm60/100, 80/125 mm
Inlet gas pressure13 mbar
Max. gas consumption2.65 m³/h2.71 m³/h
Expansion vessel capacity8 L4 L
Expansion vessel pressure1 bar
Heat exchangercopper
Connections
Mains water intake1/2"
DHW flow1/2"
Gas supply3/4"
Central heating flow3/4"
Central heating return3/4"
Safety
Safety systems
gas pressure drop
water overheating
flame loss
draft control
power outage
water circulation failure
frost protection
gas pressure drop
water overheating
flame loss
draft control
 
water circulation failure
frost protection
More specs
Dimensions (HxWxD)678x410x288 mm738x440x240 mm
Weight28.5 kg32 kg
Added to E-Catalogaugust 2019september 2012

Heating area

A very conditional parameter that slightly characterizes the purpose based on the size of the room. And depending on the height of the ceilings, layout, building design and equipment, actual values may differ significantly. However, this item represents the maximum recommended area of the room that the boiler can effectively heat. However, it is worth considering that different buildings have different thermal insulation properties and modern buildings are much “warmer” than 30-year-old and especially 50-year-old houses. Accordingly, this item is more of a reference nature and does not allow us to fully assess the actual heated area. There is a formula by which you can derive the maximum heating area, knowing the useful power of the boiler and the climatic conditions in which it will be used; For more information on this, see "Useful Power". In our case, the heating area is calculated using the formula “boiler power multiplied by 8”, which is approximately equivalent to use in houses that are several decades old.

Condensing

Boilers generate additional heat by condensing water vapour from combustion products. In such units, the combustion gases, before entering the flue, are passed through an additional heat exchanger, in which they are cooled, and the water vapour condenses and transfers thermal energy to the coolant. It allows you to increase the efficiency by 10 – 15% compared to boilers of the classical design — up to the fact that in many similar models, the efficiency exceeds 100% (for more details, see "Efficiency").

The condensation principle of operation is most often found in gas models (see "Power source"); however, solid and liquid fuel boilers with this feature are also produced.

Power consumption

The maximum electrical power consumed by the boiler during operation. For non-electric models (see Energy source), this power is usually low, as it is required mainly for control circuits and it can be ignored. Regarding electric boilers, it is worth noting that the power consumption in them is most often somewhat higher than the useful one since part of the energy is inevitably dissipated and not used for heating. Accordingly, the ratio of useful and consumed power can be used to evaluate the efficiency of such a boiler.

Rated current

The current consumed by the electric boiler (see "Power source") during normal operation.

This parameter directly depends on the power. It is required primarily for organizing the connection: wiring and automation must safely deal with the current consumed by the unit.

Coolant min. T

The minimum operating temperature of the heat medium in the boiler system when operating in heating mode.

Coolant max. T

The maximum operating temperature of the heat medium in the boiler system when operating in heating mode.

DHW max. T

The maximum temperature of domestic hot water supplied by a dual-circuit boiler. For comparison, we note that water begins to be perceived as warm, starting from 40 °C, and in centralized hot water supply systems, the temperature of hot water is usually about 60 °C (and should not exceed 75 °C). Accordingly, even in the most modest models, this figure is about 45 °C, in the vast majority of modern boilers, it is not lower than 50 °C, and in some models, it can even exceed 90 °C.

Also when heated to a given temperature, the temperature difference ("ΔT") may be different — depending on the initial temperature of the cold water. And the performance of the boiler in the DHW mode directly depends on ΔT; see below for performance details.

Performance (ΔT=25°C)

The performance of a dual-circuit boiler in the DHW supply mode when the water is heated by 25 °C above the initial temperature.

Performance is the maximum amount of hot water the unit can produce in a minute. It depends not only on the power of the heater as such, but also on how much water needs to be heated: the higher the temperature difference ΔT between cold and heated water, the more energy is required for heating and the smaller the volume of water with which the boiler can handle in this mode. Therefore, the performance of dual-circuit boilers is indicated for certain options ΔT — namely 25 °C, 30 °C and/or 50 °C. And it’s worth choosing according to this indicator, taking into account the initial water temperature and taking into account what kind of hot water demand there is at the installation site of the boiler (how many points of water intake, what are the temperature requirements, etc.). Recommendations on this subject can be found in special sources.

We also recall that water begins to be felt by a person as warm somewhere from 40 °C, as hot — somewhere from 50 °C, and the temperature of hot water in central water supply systems (according to official standards) is at least 60 °C. Thus, for the boiler to operate in the ΔT=25 °C mode and produce at least warm water at 40 °C, the initial temperature of cold water must be at least 15 °C (15+25=40 °C). It is a rather high value — for example, in a centralized water supply system, cold water...reaches 15 °C, except in summer, when the water pipes warm up noticeably; the same applies to water supplied from wells. So this performance is a very conditional value. The boiler does not work so often with a temperature difference of 25 °C. Nevertheless, the data for ΔT=25°C is still often given in the specifications — including for advertising purposes since it is in this mode that the performance figures are the highest. In addition, this information may be useful if the boiler is used as a pre-heater, and heating to operating temperature is provided by another device, such as an electric boiler or instantaneous water heater.

"Summer" mode

It is an operating mode designed for the warm season. In this mode, it works only to provide domestic hot water, and the heating is turned off. If the boiler is equipped with an outside temperature sensor, this sensor is also switched off in summer mode so that the heating does not turn on at night when the outside temperature drops.
E.C.A. Proteus Premix 24 HM often compared
Immergas Mini EOLO 24-3 E often compared