Dark mode
USA
Catalog   /   Computing   /   Networking   /   Wi-Fi Equipment

Comparison Keenetic Carrier KN-1713 vs Keenetic Explorer KN-1613

Add to comparison
Keenetic Carrier KN-1713
Keenetic Explorer KN-1613
Keenetic Carrier KN-1713Keenetic Explorer KN-1613
Outdated ProductOutdated Product
TOP sellers
Main
Proprietary KeeneticOS firmware with a modular interface. Full work with MESH networks.
Copy of model Extra KN-1713, released for other markets.
Copy of model Air KN-1613, released for other markets.
Product typerouterrouter
Data input (WAN-port)
Ethernet (RJ45)
Wi-Fi
3G modem (USB)
4G (LTE) modem (USB)
Ethernet (RJ45)
Wi-Fi
 
 
Wireless Wi-Fi connection
Wi-Fi standards
Wi-Fi 3 (802.11g)
Wi-Fi 4 (802.11n)
Wi-Fi 5 (802.11ac)
Wi-Fi 3 (802.11g)
Wi-Fi 4 (802.11n)
Wi-Fi 5 (802.11ac)
Frequency band
2.4GHz
5 GHz
2.4GHz
5 GHz
Operating rangesdual-band (2.4 GHz and 5 GHz)dual-band (2.4 GHz and 5 GHz)
Wireless speed 2.4 GHz300 Mbps300 Mbps
Wireless speed 5 GHz867 Mbps867 Mbps
Connection and LAN
WAN
1 port
100 Mbps
1 port
100 Mbps
LAN
3 ports
100 Mbps
3 ports
100 Mbps
Reassignable WAN / LAN4 ports
USB 2.01
Antenna and transmitter
Number of antennas22
Antenna typeexternalexternal
MU-MIMO
Gain5 dBi5 dBi
Hardware
CPUMediaTek MT7628NMediaTek MT7628N
Clock Speed0.58 GHz0.58 GHz
RAM128 MB128 MB
Flash memory32 MB32 MB
Functions
Features
channel reservation
NAT
MESH mode
Beamforming
firewall
CLI (Telnet)
channel reservation
NAT
MESH mode
Beamforming
firewall
CLI (Telnet)
More features
DHCP server
FTP server
file server
media server (DLNA)
print server
torrent client
VPN
DDNS
DMZ
DHCP server
 
 
 
 
 
VPN
DDNS
DMZ
Security
Safety standards
WPA
WEP
WPA2
WPA3
802.1x
WPA
WEP
WPA2
WPA3
802.1x
General
Operating temperature0 °C ~ +40 °C0 °C ~ +40 °C
Dimensions159x110x29 mm159x110x29 mm
Weight252 g248 g
Color
Added to E-Catalognovember 2023november 2023

Data input (WAN-port)

Methods for connecting to the Internet (or other external network, such as in bridge mode) supported by the device.

The classic, most common version of such a connection nowadays is LAN (Ethernet), but this is not limited to this. A wired connection can also be made via ADSL or SFP fiber, and wirelessly via mobile networks (using a SIM card, SIM card 5G or an external modem for 3G or 4G), as well as via Wi-Fi. Here is a more detailed description of each option:

— Ethernet (RJ45). Classic wired connection via a network cable via an RJ-45 connector. Also known as "LAN", although this designation is not entirely correct. Nowadays, it is one of the most common methods of wired Internet connection, and is also widely used in local networks. This is due to the fact that the speed of Ethernet is actually limited only by the capabilities of network controllers; at the same time, even the simplest modules support up to 100 Mbps, and in advanced equipment this value can reach 10 Gbps.

— ADSL. A technology primarily used for wired Internet connections over existing landline telephone lines. This is its main advantage — you can use ready-made lines without fiddling with laying numerous addi...tional wires; at the same time, ADSL works independently of telephone calls and does not interfere with them. At the same time, the speed of such a connection is noticeably lower than via Ethernet — even in advanced equipment it does not exceed 24 Mbps. In addition, ADSL traffic is distributed asymmetrically: full speed is achieved only when working for reception, data transmission speed is much lower, which creates problems for video communication and some other tasks. So nowadays, ADSL is gradually being replaced by more advanced standards, although the complete disappearance of this technology is still far away.

— Wi-Fi. Connect to an external data source via Wi-Fi. By definition, this format of operation is used by Wi-Fi adapters (see "Device type"), as well as by most MESH equipment. (However, if the MESH system package includes both nodes and the main control device for them, then the WAN input can be specified for the control device, and often this is not Wi-Fi). Also, this type of data input can be provided in other types of equipment — in particular, routers and access points (for example, to work in bridge or repeater mode).

— 3G modem (USB). Internet connection via 3G mobile network using a separate external modem connected to the USB port. Most often, we are talking about UMTS networks (the development of GSM mobile communications), the most common in Europe and the post-Soviet space; however, it may also be possible to use modems for CDMA networks (EV-DO technology). These nuances, as well as compatibility with specific modem models, need to be clarified separately. However, anyway, 3G may be a good option for situations where a wired Internet connection is difficult or impossible, such as in the private sector. In addition, some Wi-Fi devices with this feature are equipped with autonomous power supplies and can even be used on the go. The data transfer speed of 3G is close to broadband wired connection (from 2 to 70 Mbps with a normal signal, depending on the specific technology); however, it is less than in 4G networks (see below), but 3G coverage is more extensive, and equipment for this standard is cheaper.

— 4G (LTE) modem (USB). Internet connection via 4G mobile network (LTE) using a separate external modem connected to the USB port. The main features are similar to the 3G connection described above, adjusted for the fact that in this case more advanced fourth-generation networks are used. The data transfer rate in such networks reaches about 150 Mbps; they are not as widespread as 3G-connection, but soon we can expect a change in the situation. In addition, it should be noted that in Europe and the post-Soviet space, LTE networks are usually deployed on the basis of 3G UMTS and GSM networks; so in the absence of full-fledged 4G coverage, modems for such networks can work according to the 3G and even GSM standard.

— SIM card. Connecting to the Internet via a mobile network using a mobile operator's SIM card installed directly in the device. The specific type of supported networks depends both on the capabilities of the router and on the conditions of a particular mobile operator; however, all such equipment is compatible with at least 3G networks, and often 4G as well. The features of these networks are described in detail above (you can also read about the advantages of a mobile Internet connection there). This option is convenient because it allows you to do without a separate USB modem — you just need to purchase a SIM card, the cost of which is negligible. In addition, the use of "sim cards" has a positive effect on compactness and ease of carrying. On the other hand, the built-in mobile communication module significantly affects the overall cost — and you will have to pay for it anyway (whereas a model with support for external modems does not have to be bought immediately with a modem, such devices usually allow wired connection). Therefore, you should pay attention to this option if you initially plan to connect to the Internet through mobile networks.

- SIM card (5G). The ability to operate Wi-Fi equipment in high-speed 5G mobile networks with a peak bandwidth of up to 20 Gbps for reception and up to 10 Gbps for data transmission. Implemented via a SIM card with appropriate 5G support. This standard reduces power consumption compared to previous versions, and it also uses a number of complex solutions aimed at improving the reliability and overall quality of communication - in particular, multi-element antenna arrays (Massive MIMO) and beamforming technologies (Beamforming).

— SFP (optics). Connection via fiber optic cable of the SFP standard. Such a connection can be carried out at high speeds (measured in gigabytes per second), and the fiber, unlike the Ethernet cable, is practically insensitive to external interference. On the other hand, the support of this standard is not cheap, and its capabilities are unnecessary for domestic use. Therefore, SFP is found mainly in professional-level Wi-Fi devices.

Reassignable WAN / LAN

Reassignable WAN / LAN port in the design of the device, which can work both with an external WAN network and with a local LAN. This solution allows you to reduce the total number of connection ports and at the same time expand the functionality of the equipment for flexible adaptation to user needs.

USB 2.0

The number of USB 2.0 ports provided in the design of the device.

USB in this case plays the role of a universal interface for connecting peripheral devices to the router. The specific USB devices supported and how they are used may vary. Examples include working with a flash drive that plays the role of a drive for working in FTP or file server mode (see "Functions / Capabilities"), connecting to a printer in print server mode(see ibid), connecting a 3G modem (See "Data input (WAN-port)"), etc.

Specifically, USB 2.0 allows you to transfer data at speeds up to 480 Mbps. This is noticeably less than that of more advanced standards (starting with USB 3.2 gen1 described below), and the power supply of such connectors is low. However, even such characteristics are often quite enough, taking into account the specifics of the use of Wi-Fi devices. In addition, peripherals for newer versions can also be connected to the USB 2.0 port — the main thing is that the power supply is enough. Therefore, although this standard is considered obsolete, it is still widely used in modern wireless equipment. There are even models that provide 2 or even more USB 2.0 ports; this allows you to simultaneously use several external devices at once — for example, a 3G modem and a USB flash drive.

More features

Additional features (mostly software) supported by the device. These may include DHCP server, FTP server, Web server, file server, media server (DLNA), print server, torrent client, VPN support, DDNS support, and DMZ support, among others. Here is a more detailed description of these functions:

— DHCP server. A function that simplifies the distribution of IP addresses connected to the router (or other network equipment) to subscriber devices. Assigning an IP address is necessary for correct operation in TCP / IP networks (and this is the entire Internet and the vast majority of modern “locals”). In the presence of DHCP, this process can be carried out completely automatically, which greatly simplifies the life of both users and administrators. However, the administrator can also set additional DHCP options — for example, specify a range of available IP addresses (to prevent errors) or limit the time of using one address. If necessary, you can even manually enter a specific address for each device on the network, without automatically adding new devices — DHCP also simplifies this procedure, as it allows you to carry out all operations o...n the router without delving into the settings of each subscriber device.

— FTP server. A feature that allows you to use a Wi-Fi device to store files and access them via FTP. This protocol is widely used to transfer individual files both in local networks and over the Internet. Actually, one of the main differences between this function and the file server (see below) is, first of all, the ability to work via the Internet without much difficulty. In addition, FTP is a common standard protocol and is supported by almost any PC, while a file server can use specialized standards. So if you plan to organize file storage with the simplest and most convenient access, you should choose a device with this function. At the same time, we note that “simple” does not mean “uncontrolled”: FTP allows you to set a login and password for accessing files, as well as encrypt transmitted data. The files themselves can be stored both on the built-in storage of a network device, and on a drive connected to it, such as a USB flash drive or external HDD.

— Web server. The ability to use the router as a web server — storage that hosts ("hosts") a website. Note that this can be both an Internet site and an internal resource of the local network, strictly for personal or official use. Placing the site on your own equipment allows you to do without the services of hosting providers and maintain maximum control over the data on the site and its technical base. On the other hand, this feature significantly affects the cost of equipment, and in terms of memory and processing power, Wi-Fi devices are often inferior to dedicated servers, even based on conventional PCs and laptops (although in some models the memory can be expanded with an external drive). So in this case, the web server mode should be considered mainly as an additional option for relatively simple tasks that are not associated with high loads.

— File server. The ability to use a Wi-Fi device as a server for storing files. This function differs from the FTP server described above in the data transfer protocols used; in other words, a "file server" in this case is a network file storage based on any protocols other than FTP. A specific set of such protocols and, accordingly, the functionality of a Wi-Fi device should be specified separately; we only note that most often we are talking about accessing files over a local network (FTP is traditionally used for Internet access), and the files themselves can be stored both in the router’s own memory, and on a flash drive or external hard drive.

— Media server (DLNA). The ability to create a media library using an external USB drive and transfer content from it to other devices on your home network via cable or Wi-Fi. The function is most in demand for broadcasting video, audio files and images to smart TVs and set-top boxes. In general, the technology was conceived in order to be able to combine different devices into a single network and easily share content within this network, regardless of the model and manufacturer of individual devices. Many modern smartphones and tablets, smart home ecosystem devices, etc. have DLNA support.

— Print server. The ability of the device to work as a print server — a computer that controls the printer. This feature allows you to turn a regular printer into a network printer: all network users will be able to send print jobs through a print server, while such a server will also provide a number of additional features. So, sent jobs will be stored on it until they are executed or canceled, regardless of whether the computer from which they were sent is turned on; remote control of the print queue, etc. may be provided. And the use of a router (or other similar device) in this role is convenient because the router is usually turned on and available all the time.

— Torrent client. The presence in the device of its own torrent client or other data exchange protocol (HTTP, FTP, etc.). This feature allows you to work with file-sharing networks, which are built on the principle of "everyone's own server": the downloaded information is not on a separate computer on the network, but on the computers of the same users. At the same time, the same file can be opened for download in several places and the torrent client simultaneously downloads different parts of it from different sources - this significantly increases the speed. Using a torrent client on a device is convenient in two ways. Firstly, it allows you to offload the main computers of users - an important advantage, given that the torrent client can consume a lot of resources, especially with an abundance of simultaneous downloads / distributions. Secondly, network equipment tends to stay on at all times, allowing downloads and uploads to continue even when users' PCs and laptops are turned off. However, it should be taken into account that despite the presence of such functionality in devices, the open placement of content in torrent networks can violate copyrights. Therefore, use torrent clients in compliance with legal regulations.

— VPN (Virtual Private Network) support. Initially, VPN is a function that allows you to combine devices that are physically located in different networks into a single virtual network. The connection is via the Internet, but the data is encrypted to prevent unauthorized access to it. However, routers, access points and MESH equipment (see "Device Type") more often use a slightly different format of work: connecting to the Internet through a separate VPN server, so that all external traffic from the network served by the router goes through this server. Such a connection has a number of advantages. Firstly, additional traffic encryption increases the security of work. Secondly, “outside” in such cases, it is not the real IP address of the user that is visible, but the address of the VPN server, and in the settings you can set the address related to almost any country in the world. This also has a positive effect on security, and also makes it possible to bypass regional restrictions on visiting individual sites and accessing services.
Note that the VPN can also be “raised” on individual devices on the network (for example, through tools in some Internet browsers); however, a VPN router allows all network devices to work in this format, regardless of whether they support VPN or not. This is particularly useful on smart TVs (to access certain video services like Netflix) and on PS and Xbox (to bypass region restrictions on certain games). On the other hand, note that setting up such a connection on a router can be quite difficult, the connection speed can noticeably drop when working through a VPN, and enabling and disabling this feature on a router is usually more difficult than on user devices.

— DDNS. The device supports the DDNS function — assigning a permanent domain name to a device with a changing (dynamic) IP address. For network electronics, the IP address is of key importance, it is he who allows the equipment to send data packets to the right device. However, such addresses are sequences of numbers that are poorly remembered by a person. Therefore, domain names appeared — on the Internet these are web addresses (for example, ek.ua or e-katalog.ru), on the local network — the names of individual devices (for example, "Work laptop" or "Sergey's Computer"). Both on the Internet and in local networks, the connection between a domain name and an IP address is responsible for the so-called DNS servers: for each domain in the database of such a server, its own IP is registered. However, for technical reasons, situations often arise when the router has to use a dynamic (changeable) IP; accordingly, in order for information to be constantly available on the same domain name, it is necessary to update the data on the DNS server with each IP change. It is this update that the DDNS function provides.

— DMZ. Initially, DMZ is a function that allows you to create a segment on the local network with free access from the outside. From the rest of the network, this segment (it is called the DMZ — “demilitarized zone”) is separated by a firewall that allows only specially permitted external traffic to pass through. This provides additional protection against external attacks: in such cases, the DMZ suffers first of all, and access to other network resources is much more difficult for an attacker. One of the most popular ways to use this feature is to provide access to Internet services, the servers of which are physically located in the company's public local area network. However, it is worth noting that in some inexpensive routers, DMZ may mean the DMZ-host mode, which does not provide any additional protection and is used for completely different purposes (mainly to translate all ports to another network device). So the specific format of DMZ operation needs to be specified separately, especially if you are purchasing a low-cost category device.