USA
Catalog   /   Tools & Gardening   /   Machines & Equipment   /   Welders

Comparison Vitals Master MIG 1400 vs Plazma MIG/MMA-340

Add to comparison
Vitals Master MIG 1400
Plazma MIG/MMA-340
Vitals Master MIG 1400Plazma MIG/MMA-340
Outdated ProductOutdated Product
TOP sellers
Main
Operation at reduced voltage (up to 160 V)
Typesemi-automatic invertersemi-automatic inverter
Welding type
MMA
MIG/MAG
MMA
MIG/MAG
Specs
Welding currentDCDC
Input voltage230 V230 V
Minimum input voltage160 V
Power consumption7.8 kW
Power consumption4.9 kVA
Open circuit voltage60 V56 V
Min. welding current30 А30 А
Max. welding current
140 А /MIG, 120 A — MMA/
340 А
Max. welding current (duty cycle 100%)263 А
Duty cycle60 %60 %
Max. electrode size3 mm5 mm
Minimum wire diameter0.6 mm0.8 mm
Max. wire diameter1.2 mm1 mm
Wire feed speed13 m/min
More features
 
 
digital display
Hot Start
Anti-Stick
digital display
Coil locationinternalinternal
Detachable welding cable (MIG/MAG)removableremovable
General
Protection class (IP)2121
Insulation classFF
Electrode holder cable2 m2.5 m
Mass cable1.5 m2.5 m
Torch cable2.6 m
Weight13.8 kg9 kg
Added to E-Catalogmay 2020january 2020

Minimum input voltage

The minimum actual input voltage at which the welding machine remains operational.

Such information is useful primarily for working in unstable networks, where the voltage tends to “sag” a lot, as well as from autonomous power sources (for example, generators), which can also produce voltage below the nominal one.

Power consumption

The maximum power consumed by the welding machine during operation, expressed in kilowatts (kW), that is, thousands of watts. In addition, the designation in kilovolt-amperes (kVA) can be used, see below for it.

The higher the power consumption, the more powerful the current the device is capable of delivering and the better it is suitable for working with thick parts. For different materials of different thicknesses, there are recommendations for current strength, they can be clarified in specialized sources. Knowing these recommendations and the open circuit voltage (see below) for the selected type of welding, it is possible to calculate the minimum required power of the welding machine using special formulas. It is also worth considering that high power creates corresponding loads on the wiring and may require connection directly to the shield.

As for the difference between watts and volt-amperes, the physical meaning of both units is the same — current times voltage. However, they represent different parameters. In volt-amperes, the total power consumption is indicated — both active (going to do work and heat individual parts) and reactive (going to losses in coils and capacitors). This value is more convenient to use to calculate the load on the power grid. In watts, only active power is recorded; according to these numbers, it is convenient to calculate the practical capabilities of the welding machine.

Power consumption

Power consumption of the welding machine, expressed in kilovolt-amperes.

kVA is a unit of power used in welding machines along with the more traditional kilowatts. The physical meaning of both units is the same — current multiplied by voltage; however, they denote different parameters. So, in kilowatts, only a part of the total power consumption is recorded — active power (goes to do work and to losses due to heating of individual parts); according to this indicator it is convenient to calculate the practical capabilities of the device. And kilovolt-amperes denote the total energy consumption — it also takes into account reactive power (it goes to losses in coils and capacitors during the operation of alternating current circuits). This data is useful for calculating the total load on the network or other power source.

The apparent power input in kVA will always be greater than the power in kW. However, some manufacturers go to the trick and indicate full power not at full, but at partial (for example, half) load. This gives the impression of efficiency, but is incorrect from a technical point of view. As for the ratio of energy consumption, the active power in kW is often 20-30% lower than the apparent power in kVA. So, in terms of kilovolt-amperes, it is quite possible to evaluate the performance of the unit.

As for specific values, in the most modest models they do not exceed 3 kVA. An indicator up to 5 kVA is considered low, up to 7 kVA — average, and in the most powerful units, the power consumption can reach 10 kVA or even more.

Open circuit voltage

The voltage supplied by the welding machine to the electrodes. As the name suggests, it is measured without load — i.e. when the electrodes are disconnected and no current flows between them. This is due to the fact that at a high current strength characteristic of electric welding, the actual voltage on the electrodes drops sharply, and this does not make it possible to adequately assess the characteristics of the welding machine.

Depending on the characteristics of the machine (see "Type") and the type of work (see "Type of welding"), different open circuit voltages are used. For example, for welding transformers, this parameter is about 45 – 55 V (although there are higher voltage models), for inverters it can reach 90 V, and for semi-automatic MIG / MAG welding, voltages above 40 V are usually not required. Also, the optimal values \u200b\u200bdepend on type of electrodes used. You can find more detailed information in special sources; here we note that the higher the open-circuit voltage, the easier it is usually to strike the arc and the more stable the discharge itself.

Also note that for devices with the VRD function (see "Advanced"), this parameter indicates the standard voltage, without reduction through VRD.

Max. welding current

The highest current that the welding machine is capable of delivering through the electrodes during operation. In general, the higher this indicator, the thicker the electrodes the device can use and the greater the thickness of the parts with which it can work. Of course, it does not always make sense to chase high currents — they are more likely to damage thin parts. However, if you have to deal with large-scale work and a large thickness of the materials to be welded, you simply cannot do without a device with the appropriate characteristics. Optimum welding currents depending on materials, type of work (see "Type of welding"), type of electrodes, etc. can be specified in special tables. As for specific values, in the most “weak” models, the maximum current does not even reach 100 A, in the most powerful ones it can exceed 225 A and even 250 A.

Max. welding current (duty cycle 100%)

The highest welding current at which the machine is able to operate with a duty cycle of 100%.

See below for more information on the frequency of inclusion (PV). Here we recall that “100% duty cycle” means continuous operation, without shutdowns for cooling. Thus, the maximum welding current at 100% duty cycle is the highest current at which the machine can be used without interruption. Usually, this current is much lower than the maximum.

Max. electrode size

The largest diameter of the electrode that can be installed in the welding machine. Depending on the thickness of the parts, the material from which they are made, the type of welding (see above), etc. the optimal electrode diameter will be different; there are special tables that allow you to determine this value. Large diameter may be required for thick materials. Accordingly, before purchasing, you should make sure that the selected model will be able to work with all the necessary electrode diameters.

In modern welding machines, an electrode diameter of 1 mm or less is considered very small, 2 mm — small, 3 mm and 4 mm — medium, and powerful performant models use electrodes of 5 mm or more.

Minimum wire diameter

The minimum diameter of the welding wire that the machine can work with.

Wire electrodes are used in semi-automatic models (see "Type"), mainly for MIG/MAG welding (see "Type of welding"). The thinner the electrode, the better it is suitable for delicate work where a small thickness and width of the seam is required. Specific recommendations on the diameter of the wire for a particular task can be found in special sources.

Max. wire diameter

The maximum diameter of the welding wire that the machine can work with.

Wire electrodes are used in semi-automatic models (see "Type"), mainly for MIG/MAG welding (see "Type of welding"). Specific recommendations on the diameter of the wire for a particular task can be found in special sources, but here we note that a large electrode thickness is important for rougher jobs that require a thick seam and a large amount of material. In general, the wire is noticeably thinner than traditional electrodes. The standard option here is considered to be a maximum diameter of 1 mm, smaller values ( 0.8 mm and 0.9 mm) are found mainly in low-power devices for fine work, and 2 mm or more — on the contrary, in advanced performant units.
Vitals Master MIG 1400 often compared
Plazma MIG/MMA-340 often compared