Dark mode
USA
Catalog   /   Climate, Heating, Water Heating   /   Water Supply & Pumps   /   Water Heaters

Comparison Midea JSD20-10DH4 vs Bosch Therm 8000 S WTD 27 AME

Add to comparison
Midea JSD20-10DH4
Bosch Therm 8000 S WTD 27 AME
Midea JSD20-10DH4Bosch Therm 8000 S WTD 27 AME
Outdated Product
from $1,145.00 up to $1,595.28
Outdated Product
User reviews
0
0
0
2
TOP sellers
Typetanklesstankless
Energy sourcegasgas
Installationverticalvertical
Tank shaperectangularrectangular
Technical specs
Power sourceenergy independent230 V
Rated heat exchanger power20 kW47 kW
Max. water temperature60 °C
Performance (Δt ~25 °C)10 L/min27 L/min
Water supplywith pressurewith pressure
Heating elements11
Heating element type
heat exchanger
heat exchanger
Ignition typebatteriesmains
Combustion chamber typeopen (atmospheric)closed (turbocharged)
Flue diameter110 mm60/100 mm
Features
Functions
thermostat
water flow regulator
display
thermostat
water flow regulator
display
Safety systems
overheat protection
frost protection
safety valve
gas control
 
overheat protection
 
 
gas control
draft sensor
General specs
Controlsmechanicalelectronic
Controls layoutfrontfront
Pipe connectionbottombottom
Conversion to LPG
Dimensions (HxWxD)59x33x19.5 cm77.5x45.2x28.6 cm
Weight9.3 kg34 kg
Added to E-Catalogjuly 2021july 2011

Power source

The type of power required to operate the water heater.

230 V (1 phase). Powered by a single-phase household main at 230 V. At the same time, relatively low-power models (up to 3.5 kW) can be plugged into a regular outlet, with higher power a special connection format will be required. However, such devices are relatively easy to supply. On the other hand, in heaters of more than 10 kW, this option is practically not found.
Also note that it is this type of power that is used by all gas and indirect models, in which electricity is required only for the operation of control circuits. The power consumption of such circuits is small, and an ordinary outlet is enough for them, as they say, “with a head”.

400 V (3 phases). Powered by a three-phase main at 400 V. This power format can be called "industrial", connection to 400 V is available in specialized boiler rooms, workshops and other similar places, but in an ordinary residential area it may be difficult — you will likely have to pull the wire to the street power line or switchboard. On the other hand, such power is suitable for heaters of any power. And if you have the opportunity to connect the heater to both 230 V and 400 V, it is better to choose the second option — it will provide a more reliable account of the energy consumed.

— Non- Energy independent. Water heaters that operate without power at all and do not require an electrical connection. Only gas a...nd indirect models can be energy-independent (see “Energy source”). However, not every gas or indirect heater belongs to this category.

Rated heat exchanger power

Rated power of the heat exchanger installed in the gas or indirect heater (see "Water heater type"), in other words, the amount of heat that can be transferred to the heated water through the heat exchanger.

This parameter is directly related to the performance of the water heater: high performance inevitably requires appropriate power. At the same time, the power of the heat exchanger is selected in such a way as to provide the necessary operating parameters (primarily performance and temperature). So when choosing a water heater, you should focus primarily on these parameters. Data on the power of the heat exchanger may be needed for some specific calculations — for example, assessing the compatibility of the heater with a boiler or solar collector: an external heat source must have no less thermal power than the heat exchanger, otherwise, it will be impossible to achieve the claimed performance.

It is also worth considering that the actual power of the heat exchanger depends on the temperature of the coolant flowing through it. In the characteristics of the water heater, usually, the power is given for the maximum allowable operating temperature; if the coolant is cooler, then the actual power will be lower.

Max. water temperature

The highest water temperature provided by the device. The standard temperature of hot water in the water supply is 60 °C, and this value is actually the minimum for modern water heaters: models with more modest rates (usually from 40 °C) are extremely rare. But higher values can be found much more often: for example, water heaters of 75 °C and 80 °C are very popular, and in the most powerful models in this regard, the temperature can reach 95 °C and even higher.

On the one hand, strong heating requires appropriate power (which is especially noticeable in the case of instant electric heaters). On the other hand, the higher the temperature of hot water, the less it is needed for a comfortable outlet temperature, after mixing with cold water; this reduces the consumption of heated water, which is especially important for storage boilers. In addition, many models have thermostats (see "Features").

Also, note that heating to operating values may involve different ΔT (degree of temperature change) — depending on the initial temperature of the cold water. The actual performance of the heater directly depends on ΔT; this moment is described in more detail below, in the paragraphs devoted to performance at different ΔT.

Performance (Δt ~25 °C)

Water heater performance when heating water by approximately 25 °C above the initial temperature.

Performance is the maximum amount of hot water the unit can produce in a minute. It depends not only on the power of the heater as such, but also on how much water needs to be heated: the higher the temperature difference ΔT between cold and heated water, the more energy is required for heating and the smaller the volume of water with which the unit can handle in this mode. Therefore, the performance of water heaters must be indicated for specific options ΔT — namely 25 °C, 40 °C and/or 50 °C. And it is worth choosing according to this indicator taking into account the real needs for hot water: exactly how much and what temperature is needed for a particular situation. Methods of such calculations can be found in special sources.

Recall that water begins to be felt by a person as warm somewhere from 40 °C, as hot — somewhere from 50 °C, and the temperature of hot water in central water supply systems (according to official standards) is at least 60 °C. Thus, at Δt~25°C, for heating to at least the same 40°C, the initial water temperature must be at least 15°C (15+25=40°C). This is a rather high value — for example, in a centralized water supply system, cold water reaches 15 °C, except in summer, when the water pipes warm up noticeably; the same applies to water supplied from wells. So in the “Δt ~ 25 °C” mode, modern water heaters work quite rarely — eithe...r if the initial water temperature is high enough, or if it does not need to be heated much. Most often, the degree of heating is much higher, and the performance is lower. Nevertheless, data for a given degree of heating is still often given in the characteristics — including for advertising purposes, since with a low ΔT, the performance figures are quite impressive. In addition, this information can be useful in fact — for the situations mentioned above, when heating by 25 °C is quite enough.

Ignition type

The method of ignition of gas in gas water heaters.

— Batteries. Ignition from an electric spark created by a special electrical circuit powered by batteries. Battery ignition allows you to ignite without unnecessary wires, it can be used in models that do not require a mains connection at all. However, the user has to monitor the condition of the batteries and periodically change them, but this does not have to be done so often, and the replacement itself is not difficult.

— Mains. Ignition from an electric spark created by electricity from a socket. Batteries do not need to be changed in such systems but water heaters require a connection to the mains. Mains ignition is found mainly among gas heaters with advanced electronic control, in which power from the outlet is required for control circuits — it makes sense to power the ignition from the same outlet.

Piezo ignition. Ignition due to a piezoelectric element — a special device that generates electricity when a button is pressed (transforms the mechanical energy of pressing into electrical energy). Piezo ignition does not require battery power, and the life of the piezo element is usually comparable to the life of the heater itself.

Turbine. It is used in instant water heaters (see "Type"). With this type of ignition, electricity to crea...te a spark is generated by a microturbine driven by the movement of water through the heater. At the same time, in many cases, no additional actions are required from the user — ignition occurs automatically when the tap is opened and water begins to move through the device.

Note that most gas boilers also allow traditional ignition, from a match or other open flame. This option is provided as a spare, in case of failure of the main ignition system.

Combustion chamber type

Type of combustion chamber of a gas water heater. Combustion chambers are divided into open and closed.

Open (atmosheric). It works according to the classical scheme: for the combustion of fuel, the air is consumed from the room in which the heater is located, and the combustion products are removed through the flue due to the natural draft. For normal operation of such a heater, the room must have good ventilation, and the flue must be at least 4 m high.

Closed (turbocharged). The closed combustion chamber draws air for combustion of the fuel from the outside, and the products of combustion are removed there. In this case, gas exchange is carried out forcibly, with the help of a fan, therefore sometimes such combustion chambers are called turbocharged. The main advantage of such heaters is that they take air for combustion from the street without burning oxygen in the room. Thus, comfortable conditions are provided in the room, and the heater itself can be installed regardless of ventilation conditions (for example, in the kitchen or the bathroom). ). However, for turbocharged chambers, there are restrictions on the maximum length of the flue.

Flue diameter

Flue diameter for which the gas water heater is designed (see "Energy source").

This parameter is useful primarily for the selection and installation of a flue for a specific device. At the same time, it is worth remembering that the design of the duct differs depending on the type of combustion chamber (see above). So, for an open chamber, an ordinary pipe is used; in such cases, one diameter is indicated in the characteristics. But closed (turbocharged) combustion chambers are usually made under the so-called coaxial flue — a channel of the "pipe in pipe" type, where combustion products are brought out through the inner pipe, and the air necessary for fuel combustion is taken from the outside through the outer pipe. For such chimneys, two diameters are indicated for each of the pipes.

Safety systems

The safety of water heaters can be carried out by such functions as overheat protection frost protection, dry heating protection, surge protection, electrical protection (RCD), anti-legionella, gas control and draft sensor. More about them:

— Overheat protection. Water heater safety system that automatically turns off the power supply or gas supply (depending on the type) when the heating element reaches a critical temperature. It avoids overheating and the troubles associated with it, ranging from heater failure to fire.

— Frost protection. Function to prevent freezing of water in the circuits, tank and/or heat exchanger of the water heater. It will be useful when the device is installed in a room with a low temperature and works with long breaks. Frozen water expands, which can damage the device; to avoid this, the frost protection monitors the temperature of the water in the device and turns on the heating when this temperature drops to a critical level.

— Dry heating protection. A safety system that prevents the heater from being switched on without the presence of water in it. Since the heating element does not transfer heat to the water when turned on, it heats up very q...uickly and, in a short time, reaches a high temperature that can lead to damage to the heater and even to a fire. The presence of protection against switching on without water allows you to avoid such unpleasant consequences.

— Voltage surge protection. System for protecting the heater from power surges. Electronically controlled models are usually equipped with such protection (see Control) since it is the control electronics that are most sensitive to problems with the power supply. Note that the capabilities of such systems are noticeably more modest than those of specialized stabilizers or protective systems: the “hardware” of a water heater can smooth out relatively weak power surges, but in case of serious failures, it will most likely simply turn off the device to avoid damage. However, this feature will be useful; except that in very unstable electrical grids, prone to frequent fluctuations, such a heater may require an external stabilizer.

— Electrical protection (RCD). Built directly into the heater, the RCD is a residual current device. Such a device is primarily intended to protect people from electric shock — for example, if the insulation is damaged and electricity leaks into the case or water. When a person comes into contact with this electricity, a so-called leakage current occurs. The RCD reacts to it and almost instantly turns off the power to the boiler, preventing electric shock.
Note that such safety devices are standardly installed directly in switchboards. However, the presence of an RCD in the water heater provides additional security. Naturally, such equipment is found mainly in electric models.

— Safety valve. A safety system that prevents a critical increase in water pressure in the heater. Usually, this protection is based on a safety valve that opens when a certain pressure level is reached and drains excess water, avoiding damage to the heater.

— Gas control. Gas heater safety system that automatically shuts off the gas supply in the event of a burner flame failure. It avoids filling the room with gas and possible unpleasant, and even tragic consequences. Resuming the gas supply after the protection is triggered must be done manually.

— Draft sensor. A sensor that monitors the presence of draft in the flue of a gas water heater. This function is especially important for models with open combustion chambers: in the absence of a draft, combustion products will fill the room where the heater is located. And this, in turn, can lead to a deterioration in people's well-being, health problems and even deaths. To avoid such consequences, this sensor, when detecting problems with the draft, turns off the gas supply and issues a warning about the problem. However, such equipment can also be found in models with closed combustion chambers. In them, the draft sensor performs mainly a diagnostic function, allowing you to determine what interferes with the normal operation of the burner.

— Anti-legionella. A function that prevents the growth of pathogenic bacteria in the tank and water heater circuits. Some types of such bacteria can live and multiply in fairly hot water — up to 60 °C. To avoid this, the anti-legionella system monitors the temperature of the water in the tank and periodically raises it to a level of about 65 °C. The specific methods of operation of such systems can be different: for example, some work strictly according to a set schedule (for example, once every two weeks), others turn on additional heating only if for some period (for example, a month) the water has not been heated to sufficiently high temperatures.

Controls

- Mechanical. Manual control using rotary knobs and mechanical buttons. Models with mechanical controls are inexpensive, but the control capabilities themselves are quite limited and, as a rule, include only basic functions.

- Electronic. This control is carried out using an electronic unit. Electronically controlled heaters, as a rule, have a wider range of functions than their “mechanical” counterparts; they can be programmed and equipped with a display to indicate various parameters. On the other hand, with all other characteristics being equal, such heaters are much more expensive.